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Leonhard Euler did an immense amount of work in optics, but that work is not very well known 
among mathematicians.  Seven volumes in Series III of the Opera omnia are devoted to Euler's optics, 
two volumes to his 1769 book the Dioptricae and five volumes containing the 56 papers he wrote on the 
subject.  All but six of those papers were published during Euler's lifetime, evidence of how important 
his work was considered at the time. Several of Euler's Letters to a German Princess were devoted to 
optics as well. 

 
The two volumes of the Dioptricae and the 56 papers fill 2522 pages of the Opera omnia.  By 

comparison, Euler's work on number theory consists of 96 papers, no books, taking up 1955 pages in 
four volumes of Series I of the Opera omnia.   

 
One of Euler's earliest optics papers is also one of his best known, Nova theoria lucis et colorum, 

"A new theory of light and color" [E88] in which he criticized Isaac Newton's "projectile" theory of 
light, whereby luminous sources emitted streams of rapidly moving corpuscles and proposed instead that 
light was rather like sound.  Just as sound is a disturbance transmitted by waves in the air, so also, Euler 
suggested, light is a disturbance in the aether, which Euler and the other scientists of his times believed 
was a subtle substance filling the universe.  [Sandifer Feb 2008]  Euler was one of the first to propose a 
wave theory of light, and his theory was quite influential up until the time of Einstein. [Hakfoort 1995, 
Home 2007] 

 
The Dioptrica is a textbook on optics that leads the reader through the theory of refraction and 

the function of lenses and how to use the theory to design telescopes and microscopes.  Except for being 
written in Latin and having no problem sets at the end of each chapter, it is much like a modern text on 
the subject.   

 
In our next two columns, we are going to examine one of Euler's papers on how the Earth's 

atmosphere refracts light, Sur l'effet de la réfraction dans les observations terrestres, "On the effect of 
refraction on terrestrial observations", [E502] written about 1777 and published in 1780.  The paper is 
quite similar to one of Euler's earlier papers, De la réfraction de la lumière en passant par l'atmosphere 
selon les divers degrés tant de la chaleur que de l'élasticité de l'air, "On the refraction of light passing 
through the atmosphere due to the different degrees of heat and elasticity of the atmosphere", [E219] 
written in 1754 and published in 1756.  The earlier article applies to celestial observations, for which the 
light passed through the full depth of the atmosphere. The later article applies to terrestrial observations 
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passing from one altitude to another, say observing a taller mountain from a lower one or observing a 
ship at sea from a mountain on shore.   
 
 Euler begins his article by explaining that,   
 

"Because of refraction, the stars appear to us higher above the horizon 
than they really are.   We also encounter this same phenomenon in 
terrestrial observations, where objects always appear higher to us than 
they would if it were not for refraction.  The reason for this is that the rays 
of light do not always go in straight lines to our eyes, as we ordinarily 
suppose, but they are found to be a little bit curved, and their concavity is 
turned downward. … I propose to explain here this effect of refraction and 
to determine all the phenomena that result from it." 

 

Fig. 1
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Euler asks us to look at Fig. 1, showing an object at point O from which a ray arrives at point A 

following the curved line OA.  The direction of this ray at A is the straight line AZ, which is tangent to 
the curve at A. To the observer's eye, it appears that the object is somewhere along the tangent AZ and as 
a consequence it appears to be higher or taller than it actually is. 

 
From here, Euler's article divides naturally into two parts, the first about how the density of the 

atmosphere varies with altitude and the second about how that variation on density causes the refraction 
Euler describes.  We divide our two columns along the same lines.  In this month's column, we will see 
how Euler sets up and solves the differential equation that describes the density of the atmosphere as a 
function of altitude.  Next month we will learn about refraction and see how Euler develops tables that 
correct for that refraction.  

 
Euler tells us that because the curvature of light rays "is caused by the different densities of the 

atmosphere between the object at Z and the eye at A, it is necessary to start by determining the law 
followed by the density of the air as it decreases with altitude."  Note that he now locates the object at Z 
instead of at O, as he had in Fig. 1.  He makes the simplifying assumption that "at equal heights above 
the surface of the earth, the density of the air is always the same."  Because he means to apply this 
model to line-of-sight observations on the surface of the earth, the errors introduced by this assumption 
will probably compensate.  It will turn out that the change in air density will have a bigger impact than 
the absolute density itself. 

 
In what follows, Euler will use the symbol q to denote two different things, the density of air at a 

point Q and also a point infinitely close to that point Q. This might be inattentiveness on the part of 
Euler or his assistants, or he may think that the meaning of the symbol is clear enough from its context 
and there's no need to introduce a different symbol. 

 
Referring to Fig. 3 (we skip over Fig. 2), Euler takes c to be the density of air at A, the observer's 

location.  He lets q denote the density of air at some point Q directly above A and he takes x to be the 
height AQ.  He takes the air pressure at A, measured by the height of mercury in a barometer, to be k and 
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the pressure at Q to be p. Next he cites what we now call Boyle's Law, that the density of the atmosphere 
is proportional to the air pressure and gets the formula  
 

q
c
=
p
k
.  

 
Now Euler plans to do calculus.  Following his usual 

18th century procedures, he takes another point q infinitely 
close to Q and takes Qq = dx .  Then the density at q will be 
q + dq  and the height of the barometer, that is to say the air 
pressure, will be p + dp , where, in Euler's words, "it is clear 
that the differentials dq and dp will have negative values."  
Now the problem is to find the relations among these three 
differentials. 
 
 Because the height of the barometer falls by the 
quantity dp when the altitude increases by dx, it follows that a 
column of mercury of height dp must weigh the same as a 
column of air of height dx.  Euler knew that measurements 
showed that, near the surface of the earth, mercury is about 
10,000 times as dense as air.  He denoted this ratio of densities 
at the altitude of the observer by m.  At the altitude of the 
observer, this makes dx = −mdp . 
 
 However, the density of air varies with altitude and the density of air at Q is less than c, the 
density of air at A.  Thus at Q, if the altitude increases by dx, the corresponding column of air will be 
less dense in the ratio of c to q.  This gives us the differential equation 
 

dx = −
mcdp
q

, 

 
or equivalently, 
 

dx = −
mkdp
p

. 

 
Euler easily solves the second equation to get 
 

x = −mk ln p + C . 
 
When x = 0  we have p = k  so 0 = −mk ln k + C . This tells us that C = mk ln k , thus 
x = −mk ln p + mk ln k . We can rewrite this last formula either as  
 

x = mk ln k
p

 or as x = mk ln
c
q

. 

  

Fig. 3
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 Euler was writing for an 18th century European audience, so he gives the values of these 
constants in units that would have been familiar to his readers.  The value of k, he says, is about 28 
pouces or 2 13  pieds de Paris.  Today, these are about 30 inches, 750 mm or 1000 millibars.  He adds 
that the product mk expresses a height of about 23,333 pieds or 4000 toises. A toise was a French unit of 
measure, usually equal to six feet, but sometimes six and a half, and the length of a foot varied across 
different parts of France.  The unit became obsolete with the establishment of the metric system after the 
French revolution of 1789, but people continued to use it for many years in Louisiana and Quebec.  
Euler's toises seem to be about 6.25 of our modern feet, so 4000 toises are about 25,000 in today's feet. 
 
 Euler notes that his equation can be rewritten in a number of forms, starting with 
x
mk

= ln k
p
= ln c

q
.  He can exponentiate to get either 

c
q
= e

x
mk  or 

q
c
= e

−
x
mk .  This last version expands 

into a Taylor series approximation to give  
 

c
q
= 1− x

mk
+

xx
mmkk

−
x3

m3k 3
. 

 
He uses the second version because it leads to an alternating series and he knows that it will converge 
more quickly. 
 
 Euler tells us that for all but the highest mountains, x is considerably less than mk, so even this 
approximation converges very quickly, and that for most observations only the first two terms are 
necessary, so it is usually accurate enough to take 
 

q
c
= 1− x

mk
. 

 
 With this, Euler has a good formula giving q, the density of air in terms of c, the density at the 
altitude of the observer and x, the altitude above the observer, as well as in terms of known or 
observable constants. 
 
 Euler opens the next section of his paper with the words, "Having determined the density of air 
for all heights above the level of the level of the observer at the point A, it remains to determine the 
refraction suffered by a ray of light as it passes from air of one density into air of another density."  This 
will require another set of differential equations that incorporate Snell's law, and will be the subject of 
next month's column. 
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