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In our last column we began a study of one of Euler's papers on how the Earth's atmosphere 
refracts light, Sur l'effet de la réfraction dans les observations terrestres, "On the effect of refraction on 
terrestrial observations", [E502] written about 1777 and published in 1780.   We learned  "that the rays 
of light do not always go in straight lines to our eyes, as we ordinarily suppose, but they are found to be 
a little bit curved, and their concavity is turned downward" and 
that this phenomenon is due in part to refraction as the rays pass 
between the rarified air at higher altitudes and the denser air at 
lower altitudes.   

 
As we saw last month, in Euler's Fig. 31, C represents the 

center of the earth and A the location of an observer.  The circle is 
not the surface of the earth but all the points at the level of the 
observer.  The point Q is some point above the observer and x is 
the vertical distance AQ.  The density of the air at A and Q is 
denoted by c and q respectively (though q also denotes a point 
infinitely close to Q).  The air pressure, what Euler calls its 
elasticity, is denoted by k and p respectively.  Because he used a 
mercury barometer to measure air pressure, he also used m to 
denote the relative density of mercury to air and told us that m was 
approximately 10,000. Then, by what we now call Boyle's law,  
 

q
c
=
p
k

. 

 
The main result of the first part of Euler's paper was an equation that describes the density of air 

at different altitudes.  He found that  
 

q
c
= e

−
x
mk . 

 
                                                             
1 Our numbering of figures may be confusing here.  We saw Euler's Figs. 1 and 3 in last month's column.  We won't need to 
look at his Fig. 2.   We've added an illustration between his Figs. 3 and 4 and named it Fig. 3.5. 
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He uses this formula in various forms, including its logarithmic forms, 
x
mk

= ln k
p
= ln c

q
.  He 

also notes that his formula for cq  is well approximated by the first few terms of a Tayler series expansion 
of its right-hand side, so for most practical purposes he would be able to use  
 

c
q
= 1− x

mk
+

xx
mmkk

−
x3

m3k 3
. 

 
Indeed, because m is so large, "we could content ourselves for most observations to the first two terms, 

1− x
mk

, at least when we do not have to measure mountains of very considerable height." 

 
Knowing the formulas for density, Euler is ready to move on to refraction. Euler asks us to 

consider a ray of light that passes directly from a vacuum into ordinary air of density c, which continues 
to denote the density of air at the point A, the level of the observer.  Then there is a physical constant δ 
such that the ratio of the sine of the incidence to the sine of the refraction is as 1 is to 1 – δ, and that the 
value of δ is about 3

10,000 .  In writing this, Euler is implicitly using Snell's law, illustrated in our Fig. 3.5. 
 

B

A

Fig. 3.5 - Snell's law
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 In Fig. 3.5, a ray of light is shown passing from a vacuum into air of density c.  The angle A is 
the angle of incidence, or simply the incidence, and Euler calls the angle B the angle of refraction, or just 

the refraction.  Then Euler's version of Snell's law says that 
sinA
sinB

=
1

1− δ
.  This version is formulated 

relative to the optical density of air at the observer.  Modern versions use either the speed of light in the 
two media or they use tables of optical densities.  They are all equivalent.  
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In Euler's problem, though, the density of air varies with altitude, so he has to adapt his formula a 
bit to describe light passing from a vacuum into air of density q.  He claims that then the ratio of the 

sines will be "as 1 to 1− δq
c ", that is to say, sinA

sinB
=

1
1− δq

c

 

 
Likewise, if the same ray of light passes from a vacuum into air of density r, the ratio of the 

corresponding sines will be as 1 is to 1− δ r
c .  Moreover, the process reverses, so that for light passing the 

other direction, from air of density r into a vacuum, the corresponding ratio will be the inverse. 
 
Euler claims that as a consequence, the ratio of the sines for a ray passing from air of density q to 

air of density r will be as 1− δq
c  is to 1− δ r

c .  But because δ is so very small, this is almost the same as 

the ratio 1 to 1+ δ q− r( )
c . 

 
Now, using a standard technique of physics pioneered by Euler himself, Euler takes r to be 

infinitely close to q, which amounts to taking r = q + dq .  Then as the ray passes from air of density q to 
air of density q + dq, the ratio of refraction will be as 1 is to 1− δ dq

c .  Reciprocally, as the light passes in 

the other direction, the ratio will be the reciprocal, 1− δ dq
c  to 1. 

 
As we learned in last month's column, [Sandifer Jun 2009] the density of the atmosphere at an 

altitude x above the level of the observer at A is described by the equation ln
c
q
=

x
mk

.  Differentiating 

this gives 
dq
q

= −
dx
mk

, which can be rewritten 

as dq = −
qdx
mk

.    Substituting this into the last 

form of his ratio of refraction makes that ratio 
as 1 is to 1− δq dx

cmk . 
 
Now that he has formulas for the 

density of air and for the ratio of refraction, 
Euler is ready to set up and solve his main 
problem.  He refers us to his rather complicated 
Fig. 4, where the circle represents the surface 
of the earth, A, X, x and D are points on the 
surface and C is the center.  Then the radius of 
the earth is AC = a.  Let O be an object directly 
above the point D that is seen by an observer at 
A by means of a ray of light that travels along the curve OzZA.  He takes Z and z infinitely close together 
and assumes that they are directly above the points x and X, respectively. 

 
Euler takes B to be a point directly above A for the sole purpose of being able to measure the 

angle BAZ = ζ.   He takes the angle ACZ = ϕ and the distance CZ = z. Let x be the height of the point Z 
above X be x so that XZ =x and Z = a + x [taking Z to be both a distance and a point].  Thus for the point 
z we have the angle ACz = ϕ + dϕ.  This makes the angle ZCz = dϕ and the distance CZ = z + dz.  Also 
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he draws the tangent ZT at the point Z and chooses the point T so that CT is perpendicular to the tangent. 

Let CT = t and take the angle CZT = ω.  Then sinω =
t
z

. 

 
 Now let NZu be the arc of a circle through Z with center C.  It represents the layer of the 
atmosphere that passes through the point Z. Euler needs a new point s, not shown in Fig. 4, located 
beyond the point Z on the ray CZ, so that he can measure the angle of incidence of the ray OzZA as it 
passes through the layer NZu. Then angle zZs is the angle of incidence.  We've just named this angle 
CZT = ω, so angle CzZ = ω + dω.  Because angle zZs is an external angle of triangle CZz, it equals the 
sum of the other two angles CzZ and ZCz.  Consequently, the angle of incidence is 
  

zZs =ω + dω + dϕ , 
 
Because dω and dϕ are infinitesimals, Euler safely assumes that cos dω + dϕ( ) = 1  and 
sin dω + dϕ( ) = dω + dϕ , so by the angle addition formula for the sine function, the sine of the angle of 
incidence is 
 

sin ω + dω + dϕ( ) = sinω + dω + dϕ( )cosω . 
 
Meanwhile, the sine of the angle of refraction is sin ω.  To apply Snell's law, we need the ratio of the 
sine of the incidence to the sine of the refraction.  As fractions, this ratio is 
 

sinω + dω + dϕ( )cosω
sinω

= 1+
dω + dϕ( )cosω

sinω
= 1+ dω + dϕ( )cotω . 

 
Euler will find it more convenient if he can rewrite this fraction with a 1 in its numerator.  Because the 
numerator of the fraction on the middle is an infinitesimal, he rewrites the ratio as 
 

1 :1−
dω + dϕ( )cosω

sinω
. 

 
When it comes time to use this ratio, though, he will use it in the form 
 

1 :1− dω + dϕ( )cotω . 
 
 That's one part of Snell's law.  Now Euler must consider the effect of the density of air.  Earlier 
he denoted the density of air at Z as q, so the density at z is q + dq. From his earlier work on refraction, 

we get that the ratio of the sines, what Euler calls the "ratio of refraction" is 1 :1+ δ dq
c

.  Now, by Snell's 

law, the ratio of the sines equals the ratio of refraction, so we get 
 

δ dq
c

= − dω + dϕ( )cotω . 
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The first part of the article, the part we dealt with in last month's column, told us what we need to know 

to find dq.  For the given height XZ = x, we have ln
c
q
=

x
mk

, from which it follows that 

 

dq = −
qdx
mk

= −
qdz
mk

. 

 
Substituting this value for dq gives the equation 
 

δqdz
mck

= dω + dϕ( )cotω . 

Because 
q
c
= e

−
x
mk , this is the same as 

δe
−
x
mk dz
mk

= dω + dϕ( )cotω . 

 
That's a bit of a mess, but Euler, ever a genius at substitution, offers us a way to simplify it.  

Take CZ = z and CT = t.  Then sinω =
t
z

 and cosω =
zz − tt
z

.  Taking the differential 

gives dω =
zdt − t dz
z zz − tt

. Because triangles CZT and Zzu are similar and because Zu = z dϕ and uz = dz, we 

have CT :ZT = Zu : zu , that is to say 
t

zz − tt
=
zdϕ
dz

, from which we get dϕ =
t dz

z zz − tt
.  As a 

consequence we have dω + dϕ =
dt
zz − tt

.  Because cotω =
zz − tt
t

, Euler's messy equation reduces 

to 

δe
−
x
mk dz
mk

=
dt
t

, 

 
Because x = z – a, this really involves just two variables, z and t, and Euler tells us it is easy to solve. 
 
 But Euler doesn’t solve it until ten pages later in the paper.  Instead, he tells us that there is an 
easy way to use this form to determine the radius of curvature of at the point Z and then to use that to 
answer some of his questions about refraction. 
 

 Euler tells us that "as we know", the radius of curvature is 
zdz
dt

.  This seems completely 

unreasonable to those of us who learned formulas for radius of curvature that involved three-halves 
powers and second derivatives.  However, t and z don't form a rectangular or a polar coordinate system.  
In some of his papers on differential geometry, Euler has shown that for these particular variables, the 

radius of curvature really is 
zdz
dt

. 

 
 Given this, Euler finds that the radius of curvature at the point Z is  



  6 

mkze
x
mk

δt
=
mke

x
mk

δ sinω
. 

 
Now Euler takes the point Z to coincide with the point A, so that z = a, x = 0 and ω = ζ.  There, the 

radius of curvature becomes 
mk

δ sinζ
.  Euler plans to make calculations that do not involve great heights, 

so he feels safe in assuming that the radius of curvature will not change a great deal between the source 
of the light at O and the observer at A, and he concludes that the curve OzZA is approximately the arc of 

a circle of radius 
mk

δ sinζ
.  He calls this radius g, then does a bit of calculation, again using toises as his 

unit of length (see last month's column for more about toises) and estimating that δ =
3

10000
.  He finds 

that g = AG is about 13.3 million toises, or about 4.08 times the radius of the earth.  Fig. 5 is not drawn 
to scale; the arc AD is much too large and the radius of curvature AG is too small. 
 
 Euler is ready to use this approximation to do an example.  Following Fig. 5, he supposes that 
the observer at A sees an object at O that is apparently exactly on the horizon, so the angle ζ is 90°.  Let 
OA be the path of the ray of light from O to A and let AG be the radius of curvature of that path.  
Because ζ = 90°, we know that AG passes through the center 
of the circle. 
 
 Further, take angle ACO = ϕ.  Then let D to be the 
point on the surface of the earth directly beneath O and let 
AD = s, which makes s = aϕ, where a = CA is the radius of 
the earth.  Now, Euler asks how high O must be above the 
point D for it to be visible to the observer at A?   
 

This is a fairly elementary geometry problem that a 
modern reader might solve using polar coordinates.  Euler 
uses a different strategy, extending the radius OC to the point 
K that makes OKG a right angle.  Then he finds OK in terms 
of a, g and ϕ to be  
 

OK = ggcosϕ 2 + 2agsinϕ 2 − aasinϕ 2 . 
  
From there, he finds, because ϕ must be rather small, that DO 

is approximately 
3
4
⋅
ss
2a

.  All this is fairly routine, so we 

won't give details. 
 
 Euler concludes the main part of this article with a table of vertical adjustments that must be 
made for observations over various distances from 100 toises (about 200 yards) to 40,000 toises (almost 
50 miles). Then he does an example where the ray of light is elevated from the horizon when it arrives at 
the observer at the point A, and finally, almost as an afterthought, he gives an exact solution to the 
differential equation he had found earlier. 
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 In this E502, we've seen quite a few aspects of Euler's work in applied mathematics that don't 
often get a chance to shine in this series of columns.  We see how Euler often put a problem down for a 
while, only to pick it up and extend it more than 20 years later.  He had solved a similar problem [E219] 
in 1754, but he had not studied the optics of the atmosphere in the years in between.  We see that even 
after he became nearly totally blind, Euler still worked on optics.  It reminds us of the deaf Beethoven, 
still composing his Ninth Symphony 
 
 On a technical level, we see how Euler makes the transition from the algebraic formulation of 
physical laws, in this case Boyle's law and Snell's law, to a calculus-based formulation.  He was the first 
to make this a standard technique in science.  Euler also shows us how to use good approximations to 
the trigonometric and exponential functions to get accurate, though not exact, solutions to practical 
problems.   
 

Euler spent as much time on practical problems that were on the cutting edge of the 
technological and theoretical frontier of his day as he did on his pure mathematics. 
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