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The 200th anniversary of Euler’s death took place in September 1983. The
milestone was marked in a reasonable number of publications, although fewer
than the number that celebrated the tercentenary of his birth two years ago.
The MAA devoted an entire issue of the Mathematics Magazine to Euler’s
life and work [Vol. 56, no. 4, Nov. 1983] and there were at least two edited
volumes of essays published to mark the event.

Among the many essays included in [Burckhardt 1983] is a piece by Pierre
Speziali on Euler and Gabriel Cramer (1704-1752), the same Cramer whose
name is attached to the famous rule for solving linear systems. Most of
Speziali’s article is a survey of the correspondence between Euler and Cramer.
The Euler-Cramer correspondence will soon be readily available, because it
will be included in the forthcoming Volume 7 of Series IVA of Euler’s Opera
Omnia, scheduled to be published in 2010. Siegfried Bodenmann, a co-editor
of IVA.7, discusses the correspondence as an important example of 18th
scientific correspondence in his chapter in [Henry 2007].

The correspondence consists of 19 letters in perfect alternation. The first
one was a brief letter from Euler, written in 1743. Its contents and tone make
it clear that there had previously been no direct contact between the two men.
The final letter was written by Euler in late 1751, just a few weeks before
Cramer’s death. However, the 1975 catalog of Euler’s correspondence lists
only 17 of these letters. One of the two missing documents was Cramer’s final
letter to Euler. Although its whereabouts remain a mystery, its contents were
known to Speziali and will be included in the Opera Omnia, because Cramer’s
draft survives in the archives of the public library in Geneva, where Cramer
lived and taught. The other missing letter was Euler’s third to Cramer. It
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was written at some point between Cramer’s letters of September 30 and
November 11, 1744, and was entirely unknown to Speziali in 1983.

Speziali pays particular attention to the letter of November 11, 1744,
in which Cramer gave Euler a complete description of his rule for solving
systems of linear equations. This is noteworthy, because Cramer’s Rule
would not appear in print until six years later, where it was an appendix
in his very influential book Introduction to the analysis of algebraic curves
[Cramer 1750]. What’s even more interesting is that the passage in Cramer’s
letter is virtually identical, word for word, to a three-page passage in the
Introduction [Cramer 1750, pp. 657-659].

Speziali further notes that immediately before describing his famous rule,
Cramer says to Euler “your remark cannot but strike me as quite correct,
because it agrees entirely with my own thoughts on the subject.” Speziali
goes on to say that it is “very regrettable that Euler’s letter is lost because
– who knows? – it might have revealed to us a rule similar to Cramer’s, or
an original idea that had inspired the latter.” That is, he speculates that
Euler might have discovered Cramer’s Rule independently of Cramer, or that
he might even deserve priority for it, by communicating a result in his lost
letter that led Cramer to the discovery of his rule. If only that third letter
to Cramer hadn’t been lost . . .

The lost letter became known to Euler scholars at the meeting of the
Euler Society in August 2003. At some point in the 20th century, it found its
way into the private collection of Bern Dibner (1897-1988). Dibner was an
engineer, entrepreneur and philanthropist, as well as a historian of science.
Over the course of his long life, he amassed an impressive private collection
of rare books, manuscripts and letters. He donated about a quarter of this
collection to the Smithsonian in 1974 and Euler’s missing letter of October
20, 1744, was part of that gift. Mary Lynn Doan, professor of mathematics
at Victor Valley Community College, had contacted the Dibner Library of
the Smithsonian Institution in the summer of 2003 and had learned that they
have a small collection of documents by Leonhard Euler [Euler Papers]. She
visited the Library on her way to the Euler Society’s meeting that summer
and brought a photocopy of the letter with her. I was able to identify the ad-
dressee as Cramer and shortly afterwards I brought the letter to the attention
of Andreas Kleinert, co-editor of the forthcoming volume IVA.7 of the Opera
Omnia. Thanks to Mary Lynn and the excellent archivists at the Smith-
sonian, Euler’s Opera Omnia will now include the complete correspondence
with Cramer.
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Does Euler’s letter, now cataloged as R.461a in the Opera Omnia, show
that he knew Cramer’s Rule before Cramer did? Not in the least. In fact,
one of the things it tells us is that when Cramer wrote in November that
Euler’s remark “agrees entirely with my own thoughts,” Euler had actually
been talking about Cramer’s Paradox, not Cramer’s Rule.

Cramer’s Paradox was the subject of an earlier How Euler Did It column
[Sandifer 2004]. The simplest case of Cramer’s Paradox involves two curves
of the third degree. On one hand, two curves of degree m and n can intersect
in as many as mn points. This theorem, named after Etienne Bézout (1730-
1783), implies that two cubic curves may intersect in nine places. On the

other hand, an equation of degree n has (n+1)(n+2)
2

= n2+3n
2

+ 1 coefficients.
Because an equation can be multiplied by an arbitrary constant without
affecting its graph, n2+3n

2
points typically determine a curve of order n. Thus

nine points in general position uniquely determine a cubic curve, and yet two
such curves can typically intersect in nine points. In R.461a, Euler proposed
the following resolution of the paradox:

“I say, then, that although it is indeed true that a line of order
n be determined by nn+3n

2
points, this rule is nevertheless subject

to certain exceptions. . . . it may happen that such a number of
equations, which we draw from the same number of given points,
is not sufficient for this effect: this is evident, when two or several
of these equations become identical. . . . I conceive therefore, that
this inconvenience will take place when the nine points, which
ought to determine a line of the 3rd order, are disposed such that
two curved lines of this order may be drawn through them. In this
case, the nine given points, because they include1 two identical
equations, are worth but 8,. . . From this, one easily understands
that if the nine points, from which one ought to draw a line of
the third order, are at the same time the intersections of two
curved lines of this order, then, after having completed all of the
calculations, there must remain in the general equation for this
order an undetermined coefficient, and beginning from this case
not only two, but an infinity of lines of the 3rd order may be
drawn from the same nine points.”

1Euler used the French verb renfermer, which means both to include and to hide. This
is particularly appropriate, because the “two identical equations” can only be derived
through considerable calculation.
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Euler and Cramer agreed that this was the correct resolution of the para-
dox. Euler described it in his article [E147], which is discussed at length
in [Sandifer 2004]. Cramer also gave his account in [Cramer 1750]. Agnes
Scott judged that “Euler’s resolution of the paradox . . . agrees with that of
Cramer, and goes just as far, or a little bit further” [Scott 1898, p. 263] , but
it was Cramer’s name that became attached to it.

In modern terms, the question of determining the equation of a cubic
curve reduces to solving a system of 9 homogeneous linear equations in 10
unknowns. The unknowns are the coefficients of the general equation of the
third degree

αx3 + βx2y + γxy22 + δy3 + εx2 + ζxy + ηy2 + θx+ ιy + κ = 0. (1)

Every time we plug the coordinates (x0, y0) of a particular point into equa-
tion (1), we have a homogeneous linear equation in the 10 unknowns. If the
nine given points lead to a system of rank 9, then there is a unique solution,
up to scalar multiplicity. However, when the nine points in question are not
generic, but happen to be the points of intersection of two cubic curves, then
the rank of the resulting linear system is no greater than 8. Cramer and
Euler did not have these definitions and concepts of modern linear algebra
at their disposal, but they certainly understood that the question reduced to
the solution of linear systems, and this is why Cramer described his famous
Rule to Euler in his reply of November 1744.

Figure 1: Cusp of the First Kind

Euler’s lost letter contains more
than just a discussion of Cramer’s
Paradox. In fact, it contained some-
thing of a bombshell: Euler an-
nounced that he had just discovered
a simple curve that exhibited some-
thing called a cusp of the second kind
or a ramphoid cusp. A cusp of first
kind or keratoid cusp is illustrated in
figure (1) – the figure is from [E169].
The curve consists of two branches,
AM and AN , with a cusp at A and

a common tangent AL at that point. The two branches have opposite con-
cavity with respect to the common tangent. A simple example of such a
point is the origin in the graph of y = x2/3, where the common tangent is
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the y-axis. We note that this is a cubic curve, because the equation can be
re-written in the form of equation (1) as y3 − x2 = 0.

Figure 2: Cusp of the Second
Kind

Figure (2), also from [E169], illustrates
a cusp of second kind. Once again, there
are of two branches, a cusp at A, and
a common tangent at that point. This
time, however, the two branches have the
same concavity with respect to the tan-
gent. L’Hôpital (1661-1704) is responsible
for defining these two types of cusps. In
1740, Jean-Paul de Gua de Malves (1713-
1785) published a proof that no algebraic
curve could have a cusp of the second kind
in [Gua de Malves 1740].

Euler was familiar with Gua de Malves’
work and had initially accepted his result,
but in 1744 he discovered that there was a
subtle flaw in the supposed proof. In R.461a, he wrote to Cramer that “even
in the fourth order there is a curved line of this kind, whose equation is
y4 − 2xy2 + xx = x3 + 4yxx, which simplifies to y =

√
x± 4
√
x3.”

Figure 3: Euler’s Example

It’s much easier
to graph Euler’s ex-
ample in the form
y =

√
x ± x3/4 than

as an equation of the
fourth degree. In fig-
ure (3), the curve is
illustrated as a solid
line, with the dotted
graph of of y =

√
x

added for reference.
The branch y =√
x + x3/4 lies above

the square root and
the other branch y =√
x− x3/4 lies below.

This picture makes it
clear why Euler re-
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ferred to this curve as “a bird’s beak” in [E169].
What may be less clear is that the two forms of the equation given by

Euler are equivalent. To see this, begin by adding 4xy2 to both sides of
y4 − 2xy2 + xx = x3 + 4yxx. We then have

y4 + 2xy2 + x2 = x(x2 + 4xy + 4y2), or

(y2 + x)2 = x(x+ 2y)2.

Let’s observe that we must have x ≥ 0, because the two squares are non-
negative. Taking square roots, we have

y2 + x = ±
√
x(x+ 2y), or (2)

y2 ∓ 2
√
xy + x = ±x3/2. (3)

The left side of equation (3) is a perfect square, so we reject the case −x3/2 on
the right side. That means that equation (2) reduces to y2 +x =

√
x(x+2y).

Subtracting the term 2
√
xy from both sides, we have

(y −
√
x)2 = x3/2 and so

y −
√
x = ±x3/4, or

y =
√
x± x3/4.

Euler wrote R.461a shortly after completing his Introductio in analysin
infinitorum. The second volume of the Introductio [E102] is a very thorough
treatment of analytic geometry, including a classification of cubic and quartic
curves and their equations. [Cramer 1750] dealt with many of the same
topics. In the Euler-Cramer correspondence, we have the opportunity to see
two giants of the theory of equations in a free exchange of ideas.

Letters in Euler’s hand were prized by collectors in the 19th and 20th
century. Because of this, there are quite a few more letters to Euler in the
Opera Omnia than from him. Every so often, missing letters like R.461a
resurface and add to our knowledge of Euler’s achievements. It was tanta-
lizing to think that Euler might have scooped Cramer on his Rule, but the
real story is no less captivating.
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