Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 1.5

Homework problems copyright ©2000–2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt) What is $\tan\left(-\frac{\pi}{3}\right)$? Do not use a calculator – enter an exact answer.

2. (1 pt)

What is $\cos\left(\frac{\pi}{2}\right)$? Do not use a calculator – enter an exact answer.

3. (1 pt)

Express $\cos(\pi + x)$ in terms of $\sin x$ or $\cos x$.

4. (1 pt)

Sketch the graph of $f(x) = \cos(\pi x)$. What is the period of this function?

5. (1 pt)

Which graph below corresponds to the function $f(x) = 2\cos\left(x + \frac{\pi}{4}\right)$?

6. (1 pt)

The sides opposite angles A, B, and C are a, b, and c, respectively.

Find a and b if c = 2 and $B = \frac{\pi}{6}$.

7. (1 pt)

b =

 $a = _$

Consider the right triangle ABC, with right angle at C, shown below. (**Click the image for a larger view.**)

The sides opposite angles A, B, and C are a, b, and c, respectively.

Find A if
$$a = 0.5$$
 and $c = \frac{1}{\sqrt{2}}$.

$A = _$ **8.** (1 pt)

What is the period of the function $f(x) = 4 + \cos(2x)$?

9. (1 pt)

Sketch the graph of $f(x) = -\sin(3x)$. What is the amplitude of this function?

10. (1 pt)

Is the function $f(x) = \sin(-6x) + x^3$ odd, even, or neither? Type one of these three words in the answer box, without quotes.

11. (1 pt)

 $x = _{-}$

1

t = _____

The position of a particle moving on the x-axis is given by $x(t) = (\cos(\frac{\pi}{5}t - \frac{\pi}{2}))^2$.

What is the position of the particle when t = 0?

Determine the next time t at which the particle returns to this position.

12. (1 pt)

The height of a swinging pendulum is given by $y(t) = 1 - \sin(6\pi t)$.

What is the height of the pendulum when t = 0?

 $y = _$

 $t = _$

Determine the next time t at which the pendulum attains the same height.

13. (1 pt)

What is the value of $\frac{1}{1+\sin x} + \frac{1}{1-\sin x}$ when $x = \frac{\pi}{6}$? Do not use a calculator – enter an exact answer.

14.	(1	pt)
T 10	ι.	pu

Find	the	smallest	positive	value	of	х	such	that
1		1	8					
1 + si	$\frac{1}{nx}$ +	$\frac{1}{1-\sin x} =$	$\overline{3}$.					

15. (1 pt)

 $x = _{-}$

Find the smallest positive solution to the equation $\sin^2(x) - 1.2\sin(x) + 0.35 = 0$.

16. (1 pt)

Is the function $f(x) = 19x^{10} + \cos(13x^{11})$ odd, even, or neither? Type one of these three words in the answer box, without quotes.

Generated by the WeBWorK system ©WeBWorK Team, Department of Mathematics, University of Rochester