Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 1.5

Homework problems copyright ©2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

What is $\tan \left(-\frac{\pi}{3}\right)$? Do not use a calculator - enter an exact answer.

2. (1 pt)

What is $\cos \left(\frac{\pi}{2}\right)$? Do not use a calculator - enter an exact answer.

3. $(1 \mathrm{pt})$

Express $\cos (\pi+x)$ in terms of $\sin x$ or $\cos x$.

4. (1 pt)

Sketch the graph of $f(x)=\cos (\pi x)$. What is the period of this function?

5. (1 pt)

Which graph below corresponds to the function $f(x)=$ $2 \cos \left(x+\frac{\pi}{4}\right)$?

6. (1 pt)

Consider the right triangle ABC , with right angle at C , shown below. (Click the image for a larger view.)

The sides opposite angles A, B, and C are a, b, and c , respectively.

Find a and b if $c=2$ and $B=\frac{\pi}{6}$.
$a=$ \qquad
$b=$ \qquad
7. $(1 \mathrm{pt})$

Consider the right triangle ABC , with right angle at C , shown below. (Click the image for a larger view.)

The sides opposite angles A, B, and C are a, b, and c , respectively.

Find A if $a=0.5$ and $c=\frac{1}{\sqrt{(2)}}$.
$A=$ \qquad
8. (1 pt)

What is the period of the function $f(x)=4+\cos (2 x)$?

9. (1 pt)

Sketch the graph of $f(x)=-\sin (3 x)$. What is the amplitude of this function?
10. (1 pt)

Is the function $f(x)=\sin (-6 x)+x^{3}$ odd, even, or neither? Type one of these three words in the answer box, without quotes.
11. (1 pt)

The position of a particle moving on the x -axis is given by $x(t)=\left(\cos \left(\frac{\pi}{5} t-\frac{\pi}{2}\right)\right)^{2}$.

What is the position of the particle when $t=0$?
$x=$ \qquad
Determine the next time t at which the particle returns to this position.
$t=$ \qquad
12. (1 pt)

The height of a swinging pendulum is given by $y(t)=1-$ $\sin (6 \pi t)$.

What is the height of the pendulum when $t=0$?
$y=$
Determine the next time t at which the pendulum attains the same height.
$t=$
13. $(1 \mathrm{pt})$

What is the value of $\frac{1}{1+\sin x}+\frac{1}{1-\sin x}$ when $x=\frac{\pi}{6}$? Do not use a calculator - enter an exact answer.
14. (1 pt)

Find the smallest positive value of x such that $\frac{1}{1+\sin x}+\frac{1}{1-\sin x}=\frac{8}{3}$.
15. (1 pt)

Find the smallest positive solution to the equation $\sin ^{2}(x)-$ $1.2 \sin (x)+0.35=0$.

$$
\begin{aligned}
& x= \\
& \text { 16. }(1 \mathrm{pt})
\end{aligned}
$$

Is the function $f(x)=19 x^{10}+\cos \left(13 x^{11}\right)$ odd, even, or neither? Type one of these three words in the answer box, without quotes.

