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Abstract This note studies dual-based methods such as dual subgradient method, dual proximal gradi-
ent method, augmented Lagrangian method and alternating direction method of multipliers (ADMM).
Many parts of this note are based on the chapters [1, Chapter 8,12,15].

Please email me if you find any typos or errors.

1 Dual Projected Subgradient Methods (see [1, Chapter 8])

Consider the problem

min
x

f(x) (1.1)

subject to g(x) � 0,

where we assume that

– f : Rd → R is convex.
– g(·) = (g1(·), . . . , gm(·))⊤, where g1, . . . , gm : Rd → R are convex.
– The problem has finite optimal value, and the optimal set, denoted by X∗, is nonempty.
– There exists x̂ for which g(x̂) ≺ 0.
– For any λ ∈ Rm

+ , the problem minx{f(x) + λ⊤g(x)} has an optimal solution.

The Lagrange dual function is

q(λ) = inf
x

{

L(x,λ) ≡ f(x) + λ⊤g(x)
}

, (1.2)

and the dual problem is

max
λ�0

q(λ). (1.3)

For a given λ ∈ Rm
+ , suppose that the minimum in the minimization problem defining q(λ) in (1.2)

is attained at xλ, i.e.,

L(xλ,λ) = f(xλ) + λ⊤g(xλ) = q(λ). (1.4)

We seek to find a subgradient of the convex function −q at λ. For any λ̄ ∈ Rm
+ , we have

q(λ̄) = min
x

{

f(x) + λ̄⊤g(x)
}

(1.5)

≤ f(xλ) + λ̄⊤g(xλ)

= f(xλ) + λ⊤g(xλ) + (λ̄− λ)⊤g(xλ)

= q(λ) + g(xλ)
⊤(λ̄− λ),

Donghwan Kim
Dartmouth College
E-mail: donghwan.kim@dartmouth.edu



which leads to

−q(λ̄) ≥ −q(λ) + (−g(x))⊤(λ̄− λ). (1.6)

This show that

−g(xλ) ∈ ∂(−q)(λ). (1.7)

Algorithm 1 Dual Projected Subgradient (Ascent) Method
1: Input: λ0 ∈ Rm

+ .
2: for k ≥ 0 do

3: Compute xk ∈ argminx
{

L(x,λk) ≡ f(x) + λ⊤
k
g(x)

}

.
4: Choose a step size sk > 0.
5: λk+1 = [λk + skg(xk)]+.
6: If a stopping criteria is satisfied, then stop.

Example 1.1 Dual decomposition. Consider the problem

min
x

{

f(x) ≡

B
∑

i=1

fi(xi)

}

subject to Ax � b,

where f is (block-)separable, x = (x⊤
1 , . . . ,x

⊤
B)

⊤, and A = (A⊤
1 , . . . ,A

⊤
B)

⊤. Then the Lagrangian L(·)
is also (block-)separable in x:

L(x,λ) =

B
∑

i=1

Li(xi,λ),

where Li(xi,λ) = fi(xi) + λ⊤(Aixi − b). Thus, at each kth iteration of the dual subgradient method,
the x-minimization splits into B separate minimizations as

[xk]i ∈ argmin
xi

Li(xi,λk), i = 1, . . . , B.

Convergence analysis of the dual objective function sequence {q(λk)}k≥0 under various choice of
{sk}k≥0 is already known since the convergence analysis of the primal objective function sequence directly
applies here. How about the convergence analysis of a primal sequence? For the primal case, we have to
consider a primal sequence other than the sequence {xk}k≥0:

– full averaging sequence:

x̄k =

k
∑

i=0

ηk,ixi, where ηk,i =
si

∑k
l=0 sl

, i = 0, . . . , k. (1.8)

– partial averaging sequence:

x̃k =

k
∑

i=⌈k/2⌉
ηk,ixi, where ηk,i =

si
∑k

l=⌈k/2⌉ sl
, i = 0, . . . , k. (1.9)

Lemma 1.1 Assume that there exists M > 0 such that ||g(x)||2 ≤ M for any x. Let ρ > 0 be some
positive number, and let {xk}k≥0 and {λk}k≥0 be the sequences generated by the dual projected subgradient
methods with step size sk = γk

||g(xk)||2 . Then for any k ≥ 2,

f(x̄k)− f(x∗) + ρ||[g(x̄k)]+||2 ≤
M

2

(||λ0||2 + ρ)2 +
∑k

i=0 γ
2
i

∑k
i=0 γi

(1.10)

and

f(x̃k)− f(x∗) + ρ||[g(x̃k)]+||2 ≤
M

2

(||λ⌈k/2⌉||2 + ρ)2 +
∑k

i=⌈k/2⌉ γ
2
i

∑k
i=⌈k/2⌉ γi

. (1.11)
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2 Dual Proximal Gradient Methods (see [1, Chapter 12])

Consider the problem

min
x

{f(x) + φ(Ax)}, (2.1)

where we assume that

– f : Rd → (−∞,∞] is proper closed and σ-strongly convex (σ > 0).
– φ : Rp → (−∞,∞] is proper closed and convex.
– A ∈ Rp×d is a matrix.
– There exists x̂ ∈ relint(dom f) and ẑ ∈ relint(domφ) such that Ax̂ = ẑ.

We first reformulate the problem as

min
x,z

{f(x) + φ(z)} (2.2)

subject to Ax− z = 0. (2.3)

The Lagrangian is

L(x, z,µ) = f(x) + φ(z)− 〈µ, Ax− z〉 = f(x) + φ(z)− 〈A⊤µ, x〉+ 〈µ, z〉, (2.4)

and the dual function is

q(µ) = inf
x,z

{

f(x) + φ(z)− 〈A⊤µ, x〉+ 〈µ, z〉
}

(2.5)

= − sup
x,z

{

−f(x)− φ(z) + 〈A⊤µ, x〉+ 〈−µ, z〉
}

.

Then, the dual problem is

max
µ

{

q(µ) ≡ −f∗(A⊤µ)− φ∗(−µ)
}

. (2.6)

We reformulate the dual problem in its minimization form:

min
µ

{F (µ) + Φ(µ)} (2.7)

where

F (µ) = f∗(A⊤µ), Φ(µ) = φ∗(−µ). (2.8)

Theorem 2.1 Let σ > 0. Then

– If f : Rd → R is a 1
σ -smooth convex function, then f∗ is σ-strongly convex.

– If f : Rd → (−∞,∞] is a proper closed σ-strongly convex function, then f∗ is 1
σ -smooth.

Lemma 2.1 (properties of F and Φ)

(a) F is convex and LF -smooth with LF =
||A||22

σ .
(b) Φ is proper closed and convex.

Proof (a) Since f is proper closed and σ-strongly convex, f∗ is 1
σ -smooth. Therefore for any µ1,µ2, we

have

||∇F (µ1)−∇F (µ2)||2 = ||A(∇f∗(A⊤µ1))−A(∇f∗(A⊤µ2))||2

≤ ||A||2||∇f∗(A⊤µ1)−∇f∗(A⊤µ2)||2

≤ ||A||2
1

σ
||A⊤µ1 −A⊤µ2||2

≤
1

σ
||A||2||A

⊤||2||µ1 − µ2||2

=
||A||22
σ

||µ1 − µ2||2.

F is convex since F is a composition of a convex function f∗ and a linear mapping.
(b) Since φ is proper closed and convex, so is φ∗. Thus Φ(µ) ≡ φ∗(−µ) is also proper closed and convex.
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If f is also Lf -smooth, then we can use the proximal gradient method as below.

Algorithm 2 Primal Proximal Gradient Method
1: Input: x0 and L ≥ Lf .
2: for k ≥ 0 do

3: xk+1 = prox 1
L
φ(A·)

(

xk − 1
L
∇f(xk)

)

.

This might not be efficient since the proximal operator prox 1
L
φ(A·) may not have a closed-form

expression due to A (unless it is a diagonal matrix). Let’s see how we can circumvent such issue using
the Lagrange dual (even in the case where we do not need the Lf -smoothness assumption on f).

We can easily use the proximal gradient method to solve the dual problem as below.

Algorithm 3 Dual Proximal Gradient Method (dual representation)

1: Input: µ0 and L ≥ LF =
||A||22

σ
.

2: for k ≥ 0 do

3: µk+1 = prox 1
L
Φ

(

µk − 1
L
∇F (µk)

)

.

Theorem 2.2 Let {µk}k≥0 be the sequence generated by the dual proximal gradient method. Then, for
any optimal solution µ∗ of the dual problem (2.7), we have

q(µ∗)− q(µk) ≤
L||µ0 − µ∗||

2
2

2k
. (2.9)

We next find a primal representation of the dual proximal gradient method, which is written in a
more explicit way in terms of f, φ,A. (proof omitted)

Algorithm 4 Dual Proximal Gradient Method (primal representation)

1: Input: µ0 and L ≥ LF =
||A||22

σ
.

2: for k ≥ 0 do

3: xk = argmaxx
{

〈x, A⊤µk〉−f(x)
}

.

4: µk+1 = µk − 1
L
Axk + 1

L
proxLφ (Axk − Lµk).

Remark 2.1 The sequence {xk}k≥0 generated by the method will be called the primal sequence. The
elements of the sequence are actually not necessarily feasible with respect to the primal problem (2.1)
since they are not guaranteed to belong to domφ(A·). Nevertheless, the primal sequence converge to the
optimal solution x∗.

Lemma 2.2 (primal-dual relation) Let µ̄ ∈ domΦ, and let

x̄ = argmax
x

{

〈x, A⊤µ̄〉−f(x)
}

. (2.10)

Then,

||x̄− x∗||
2
2 ≤

2

σ
(q(µ∗)− q(µ̄)). (2.11)

Theorem 2.3 Let {xk}k≥0 and {µk}k≥0 be the primal and dual sequences generated by the dual proximal
gradient method. Then, for any optimal solution µ∗ of the dual problem (2.7), we have

||xk − x∗||
2
2 ≤

L||µ0 − µ∗||
2
2

σk
. (2.12)
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We can accelerate dual proximal gradient method by using the fast dual proximal gradient method
as below.

Algorithm 5 Fast Dual Proximal Gradient Method (dual representation)

1: Input: µ0 = η0 and L ≥ LF =
||A||22

σ
.

2: for k ≥ 0 do

3: µk+1 = prox 1
L
Φ

(

ηk − 1
L
∇F (ηk)

)

.

4: tk+1 =
1+

√

1+4t2
k

2
.

5: ηk+1 = µk+1 + tk−1
tk+1

(µk+1 − µk).

Theorem 2.4 Let {µk}k≥0 be the sequence generated by the fast dual proximal gradient method. Then,
for any optimal solution µ∗ of the dual problem (2.7), we have

q(µ∗)− q(µk) ≤
2L||µ0 − µ∗||

2
2

(k + 1)2
(2.13)

Algorithm 6 Fast Dual Proximal Gradient Method (primal representation)

1: Input: µ0 = η0 and L ≥ LF =
||A||22

σ
.

2: for k ≥ 0 do

3: uk = argmaxx
{

〈x, A⊤ηk〉−f(x)
}

.

4: µk+1 = µk − 1
L
Auk + 1

L
proxLφ (Auk − Lµk).

5: tk+1 =
1+

√

1+4t2
k

2
.

6: ηk+1 = µk+1 + tk−1
tk+1

(µk+1 − µk).

Theorem 2.5 Let {xk}k≥0 and {µk}k≥0 be the primal and dual sequences generated by the fast dual
proximal gradient method. Then, for any optimal solution µ∗ of the dual problem (2.7), we have

||xk − x∗||
2
2 ≤

4L||µ0 − µ∗||
2
2

σ(k + 1)2
. (2.14)

Example 2.1 Consider the one-dimensional total variation (TV) problem:

min
x

{

1

2
||x− b||22 + γ||Dx||1

}

,

where

D =













1 −1

1 −1
. . .

. . .

1 −1













.

Let f(x) = 1
2 ||x− b||22, φ(z) = γ||z||1 and A = D in (2.1). Then, f is σ-strongly convex with σ = 1, φ

is convex, and ||D||22 ≤ 4, so F (µ) = f∗(D⊤µ) is LF -smooth with LF = 4.

Algorithm 7 Dual Proximal Gradient Method for One-dimensional TV Problem (primal representation)
1: Input: µ0 and L ≥ LF = 4.
2: for k ≥ 0 do

3: xk = argmaxx
{

〈x, D⊤µk〉−
1
2
||x− b||22

}

= D⊤µk + b.

4: µk+1 = µk − 1
L
Dxk + 1

L
proxLφ (Dxk − Lµk).
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The dual problem minµ {F (µ) + Φ(µ)}, where

F (µ) = f∗(D⊤µ) =
1

2
||D⊤µ+ b||22 −

1

2
||b||22

Φ(µ) = φ∗(−µ) =

{

0, ||µ||∞ ≤ γ,

∞, otherwise,

is a constrained quadratic convex problem. The projection operator onto a norm ball C = {µ : ||µ||∞ ≤
γ} is PC(µ) = min{|µ|, γ1} ⊙ sign(µ).

Algorithm 8 Dual Proximal Gradient Method for One-dimensional TV Problem (dual representation)
1: Input: µ0 and L ≥ LF = 4.
2: for k ≥ 0 do

3: µk+1 = PC

(

µk − 1
L
(D⊤µk + b)

)
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3 Augmented Lagrangian Methods (see [1, Chapter 15])

Consider the problem

min
x

f(x) (3.1)

subject to Ax = b,

where we assume that f is proper closed and convex functions.
The dual function is

q(µ) = inf
x
{L(x,µ) ≡ f(x) + 〈µ, Ax− b〉} = −f∗(−A⊤µ)− 〈b, µ〉,

and the dual problem (in the minimization form) is

min
µ

{f∗(−A⊤µ) + 〈b, µ〉}. (3.2)

Consider the proximal point method, which has the following update at each kth iteration for given
constant ρ > 0:

µk+1 = proxρ(−q)(µk) = argmin
µ

{

1

2
||µ− µk||

2
2 + ρ(−q(µ))

}

(3.3)

= argmin
µ

{

f∗(−A⊤µ) + 〈b, µ〉+
1

2ρ
||µ− µk||

2
2

}

.

The sequence {µk}k≥0 satisfies

q(µ∗)− q(µk) ≤
||µ0 − µ∗||

2
2

2ρk
. (3.4)

Recall that the proximal point method has its accelerated version with rate O
(

1
k2

)

.
The primal representation of the dual proximal point point method is known as the augmented

Lagrangian method.

Algorithm 9 Augmented Lagrangian Method
1: Input: µ0 and ρ > 0.
2: for k ≥ 0 do

3: xk+1 ∈ argminx
{

Lρ(x,µk) ≡ f(x) + 〈µk, Ax− b〉+ ρ
2
||Ax− b||22

}

4: µk+1 = µk + ρ(Axk+1 − b)

Remark 3.1 This method has a rate faster than than the rate of the dual projected subgradient methods,
but the additional quadratic term destroys the separability for the dual decomposition.

We next show that the augmented Lagrangian method is equivalent to the dual proximal point
method. The optimality condition of the xk+1-update is

0 ∈ ∂f(xk+1) +A⊤(µk + ρ(Axk+1 − b)), (3.5)

which can be reformulated as

−A⊤µk+1 ∈ ∂f(xk+1). (3.6)

Using the conjugate subgradient theorem [1, Theorem 4.20], we have

xk+1 ∈ ∂f∗(−A⊤µk+1). (3.7)

Multiplying it by −A leads to

0 ∈ −A∂f∗(−A⊤µk+1) +Axk+1, (3.8)

which is equivalent to the following optimality condition of the proximal point update:

0 ∈ −A∂f∗(−A⊤µk+1) + b+
1

ρ
(µk+1 − µk). (3.9)
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4 Alternating Direction Method of Multipliers (see [1, Chapter 15])

Consider the problem

min
x∈Rd,z∈Rp

{H(x, z) ≡ f(x) + φ(z)} (4.1)

subject to Ax+Bz = c,

where A ∈ Rn×d, B ∈ Rn×p and c ∈ Rn. We assume that f : Rd → (−∞,∞] and φ : Rp → (−∞,∞]
are proper closed convex functions. There exists x̂ ∈ relint(dom f) and ẑ ∈ relint(domφ) for which
Ax̂+Bẑ = c. The problem (4.1) has a nonempty optimal set. Note that the objective function H(x, z)
is separable in x and z.

The dual function is

q(µ) = inf
x∈Rd,z∈Rp

{L(x, z,µ) ≡ f(x) + φ(z) + 〈µ, Ax+Bz − c〉}

= −f∗(−A⊤µ)− φ∗(−B⊤µ)− 〈c, µ〉,

and the dual problem (in the minimization form) is

min
µ

{f∗(−A⊤µ) + φ∗(−B⊤µ) + 〈c, µ〉} (4.2)

The dual subgradient method (in primal representation) for this problem is as follows.

Algorithm 10 Dual Subgradient Method
1: Input: µ0 ∈ Rn.
2: for k ≥ 0 do

3: (xk+1, zk+1) ∈ argminx∈Rd,z∈Rp {L(x, z,µk) ≡ f(x) + φ(z) + 〈µk, Ax+Bz − c〉}
4: Choose a step size sk > 0.
5: µk+1 = µk + sk(Axk+1 +Bzk+1 − c)

The (xk+1, zk+1)-update of dual subgradient method is separable, which preserves the separability of
the objective function H(x, z), but the overall method suffers from a slow worst-case convergence rate

O
(

1√
k

)

.

The dual proximal point method (in primal representation), also known as augmented Lagrangian
method or the method of multipliers, for this problem is as follows.

Algorithm 11 Augmented Lagrangian Method
1: Input: µ0 ∈ Rn and ρ > 0.
2: for k ≥ 0 do

3: (xk+1, zk+1) ∈ argminx∈Rd,z∈Rp

{

Lρ(x, z,µk) ≡ f(x) + φ(z) + 〈µk, Ax+Bz − c〉+ ρ
2
||Ax+Bz − c||22

}

4: µk+1 = µk + ρ(Axk+1 +Bzk+1 − c)

Remark 4.1 The augmented Lagrangian method is equivalent to a dual subgradient method (with step
size sk = ρ > 0) for solving the following equivalent problem of (4.1):

min
x∈Rd,z∈Rp

{

H(x, z) +
ρ

2
||Ax+Bz − c||22

}

(4.3)

subject to Ax+Bz = c,

because the function Lρ(x, z,µ) is a Lagrangian function for this equivalent problem.
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The augmented Lagrangian method has a worst-case convergence rate O
(

1
k

)

that is faster than that
of dual subgradient method, but it looses separability due to the additional quadratic term, unlike the
dual subgradient method. Also, the (xk+1, zk+1)-update step of the augmented Lagrangian method is
almost as difficult to solve as the original problem.

To circumvent this non-separability issue, the following alternating direction method of multipliers
(ADMM) solves the (xk+1, zk+1)-update of the augmented Lagrangian method by one iteration of the
alternating minimization method.

Algorithm 12 Alternating Direction Method of Multipliers
1: Input: z0 ∈ Rp, µ0 ∈ Rn and ρ > 0.
2: for k ≥ 0 do

3: xk+1 ∈ argminx∈Rd

{

Lρ(x, zk,µk) ≡ f(x) + φ(zk) + 〈µk, Ax+Bzk − c〉+ ρ
2
||Ax+Bzk − c||22

}

4: zk+1 ∈ argminz∈Rp

{

Lρ(xk+1, z,µk) ≡ f(xk+1) + φ(z) + 〈µk, Axk+1 +Bz − c〉+ ρ
2
||Axk+1 +Bz − c||22

}

5: µk+1 = µk + ρ(Axk+1 +Bzk+1 − c)

ADMM can be generalized as below by adding quadratic proximity terms with given two positive
semidefinite matrices G ∈ Sd

+ and Q ∈ Sp
+.

Algorithm 13 Alternating Direction Proximal Method of Multipliers

1: Input: x0 ∈ Rd, z0 ∈ Rp, µ0 ∈ Rn, ρ > 0, G ∈ Sd
+ and Q ∈ Sp

+.
2: for k ≥ 0 do

3: xk+1 ∈ argminx∈Rd

{

Lρ(x, zk,µk) +
1
2
||x− xk||

2
G

}

4: zk+1 ∈ argminz∈Rp

{

Lρ(xk+1, z,µk) +
1
2
||z − zk||

2
Q

}

5: µk+1 = µk + ρ(Axk+1 +Bzk+1 − c)

For the following choice:

G = αI − ρA⊤A, Q = βI − ρB⊤B (4.4)

with α ≥ ρ||A⊤A||2 and β ≥ ρ||B⊤B||2, the alternating direction proximal method of multipliers
becomes the alternating direction linearized proximal method of multipliers, also known as a linearized
ADMM.

Algorithm 14 Alternating Direction Linearized Proximal Method of Multipliers

1: Input: x0 ∈ Rd, z0 ∈ Rp, µ0 ∈ Rm, ρ > 0, α ≥ ρ||A⊤A||2 and β ≥ ρ||B⊤B||2.
2: for k ≥ 0 do

3: xk+1 = prox 1
α
f

[

xk − ρ
α
A⊤

(

Axk +Bzk − c+ 1
ρ
µk

) ]

4: zk+1 = prox 1
β
φ

[

zk − ρ
β
B⊤

(

Axk+1 +Bzk − c+ 1
ρ
µk

) ]

5: µk+1 = µk + ρ(Axk+1 +Bzk+1 − c)

Assumption 4.1 For any a ∈ Rd, b ∈ Rp, G ∈ Sd
+, Q ∈ Sp

+, and ρ > 0, the optimal sets of the problems

min
x∈Rd

{

f(x) +
ρ

2
||Ax||22 +

1

2
||x||2G + 〈a, x〉

}

(4.5)

and

min
z∈Rp

{

φ(z) +
ρ

2
||Bz||22 +

1

2
||z||2Q + 〈b, z〉

}

(4.6)

are nonempty.
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Theorem 4.1 Suppose Assumption 4.1 (in addition to the assumptions for (4.1)) holds. Let {(xk, zk)}k≥0

be sequence generated by the alternating direction proximal method of multipliers for solving (4.1). Let
(x∗, z∗) be an optimal solution of (4.1) and µ∗ be an optimal solution of (4.2). Suppose that γ > 0 is
any constant satisfying γ ≥ 2||y∗||2. Then for all k ≥ 0,

H(x̄k, z̄k)−H(x∗, z∗) ≤
||x0 − x∗||2G + ||z0 − z∗||2D + 1

ρ (γ + ||µ0||2)
2

2(k + 1)
, (4.7)

||Ax̄k +Bz̄k − c||2 ≤
||x0 − x∗||2G + ||z0 − z∗||2D + 1

ρ (γ + ||µ0||2)
2

γ(k + 1)
, (4.8)

where D = ρB⊤B +Q and

x̄k =
1

k + 1

k
∑

i=0

xi+1, z̄k =
1

k + 1

k
∑

i=0

zi+1. (4.9)

Let’s now consider the following simpler problem:

min
x∈Rd

{f(x) + φ(Ax)}, (4.10)

which is equivalent to (2.1) without the σ-strong convexity of f . As for (2.1), we can reformulate (4.10)
as

min
x∈Rd,z∈Rp

{f(x) + φ(z)} (4.11)

subject to Ax− z = 0,

which is equivalent to (4.1) with B = −I and c = 0.
We study ADMM and linearized ADMM for the problem (4.10). (Compare these methods with the

dual proximal gradient method that requires additional σ-strongly convex property of f .)

Algorithm 15 Alternating Direction Method of Multipliers for (4.10)
1: Input: z0 ∈ Rp, µ0 ∈ Rn and ρ > 0.
2: for k ≥ 0 do

3: xk+1 ∈ argminx∈Rd

{

f(x) + ρ
2
||Ax− zk + 1

ρ
µk||

2
2

}

4: zk+1 = prox 1
ρ
φ

(

Axk+1 + 1
ρ
µk

)

5: µk+1 = µk + ρ(Axk+1 − zk+1)

Algorithm 16 Alternating Direction Linearized Proximal Method of Multipliers for (4.10)

1: Input: x0 ∈ Rd, z0 ∈ Rp, µ0 ∈ Rm, ρ > 0, α ≥ ρ||A⊤A||2 and β ≥ ρ||B⊤B||2.
2: for k ≥ 0 do

3: xk+1 = prox 1
α
f

[

xk − ρ
α
A⊤

(

Axk − zk + 1
ρ
µk

) ]

4: zk+1 = prox 1
β
φ

[

zk + ρ
β

(

Axk+1 − zk + 1
ρ
µk

) ]

5: µk+1 = µk + ρ(Axk+1 − zk+1)

Example 4.1 Basis pursuit. Consider the problem

min
x∈Rd

||x||1

subject to Ax = b.
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This can be reformulated in the form of (4.11) as

min
x∈Rd

{

||x||1 + I{v : v=b}(z)
}

subject to Ax = z

by letting f(x) = ||x||1 and φ(z) = I{v : v=b}(z). For any γ > 0, proxγf (·) is a soft-thresholding operator
and proxγφ(·) = b.

Algorithm 17 Alternating Direction Linearized Proximal Method of Multipliers

1: Input: x0 ∈ Rd, µ0 ∈ Rm, ρ > 0 and L = ||A⊤A||2 (α = ρL and β = ρ).
2: for k ≥ 0 do

3: xk+1 = prox 1
ρL

f

[

xk − 1
L
A⊤

(

Axk − b+ 1
ρ
µk

) ]

4: µk+1 = µk + ρ(Axk+1 − b)

Remark 4.2 The direct extension of ADMM for three or more variables is not necessarily convergent [2],
while it works well in practice.

Remark 4.3 ADMM is a primal representation of the dual Douglas-Rachford splitting method [4], anal-
ogous to the fact that augmented Lagrangian method is a primal representation of the dual proximal
point method.

The following is Douglas-Rachford splitting method [3] that solves minx{ρ(f(x) + φ(x))}, where f

and φ are proper closed convex functions and ρ > 0.

Algorithm 18 Douglas-Rachford splitting method

1: Input: y0 ∈ Rd and ρ > 0.
2: for k ≥ 0 do

3: xk+1 = proxρf (yk)
4: yk+1 = yk + proxρφ(2xk+1 − yk)− xk
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