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1. LINEAR TRANSFORMATIONS

1.1. DEFINITION. A function T : Rn → Rm is linear if it satisfies two properties:
(1) For any vectors v and w in Rn,

(1.2) T (v + w) = T (v) + T (w) (“compatibility with addition”);

(2) For any vector v ∈ Rn and any λ ∈ R,

(1.3) T (λv) = λT (v) (“compatibility with scalar multiplication”).

Often a linear mapping T : Rn → Rm is called a linear transformation or linear map. Some authors reserve
the word “function” for a real-valued function, and call a vector-valued mapping a “transformation” or a
“mapping.” In the special case when n = m above, so the domain and target spaces are the same, we call a
linear map T : Rn → Rn a linear operator.

From the two properties (1) and (2) defining linearity above, a number of familiar facts follow. For
instance:

1.4. PROPOSITION. A linear transformation carries the origin to the origin. That is, if T : Rn → Rm is
linear and 0k ∈ Rk denotes the zero vector in Rk, then T (0n) = 0m.

Proof. Consider the equation 0n + 0n = 0n in Rn. Apply T to both sides: then in Rm we have the equation
T (0n + 0n) = T (0n). By the compatibility of T with addition (the first property above), this becomes
T (0n) + T (0n) = T (0n). Now add −T (0n) to both sides to obtain T (0n) = 0m. �

1.5. EXAMPLES. We consider some examples – and some non-examples – of linear transformations.
(1) The identity map Id : Rn → Rn defined by Id(v) = v is linear (check this).
(2) Define R : R3 → R3 by

R

xy
z

 =

 x
y
−z

 ,
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reflection through the xy-plane. Then R is linear. Indeed,

R

v1

v2

v3

+

w1

w2

w3

 = R

v1 + w1

v2 + w2

v3 + w3

 =

 v1 + w1

v2 + w2

−(v3 + w3)



=

 v1

v2

−v3

+

 w1

w2

−w3

 = R

v1

v2

v3

+R

w1

w2

w3

 ,

so (1.2) holds, and one checks (1.3) similarly.

(3) The mapping T : R2 → R2 defined by T
([
x
y

])
=

[
x
x

]
is linear (check this).

(4) The mapping T : R2 → R2 given by T
([
x
y

])
=

[
x− 1
y − 1

]
is not linear: indeed, T

([
0
0

])
=

[
−1
−1

]
,

but we know by Proposition (1.4) that if T were linear, then we would have T (0) = 0.

(5) The mapping T : R2 → R2 given by T
([
x
y

])
=

[
x
x2

]
is not linear (why not?).

(6) Any linear mapping T : R→ R is given by T (x) = mx for somem ∈ R; i.e., its graph in R2 is a line
through the origin. To see this, letm = T (1). Then by (1.3), T (x) = T (x·1) = xT (1) = xm = mx.

Warning: Note that a linear map f : R → R in the sense of Definition (1.1) is not what you
probably called a linear function in single-variable calculus; the latter was a function of the form
f(x) = mx + b whose graph need not pass through the origin. The proper term for a function like
f(x) = mx + b is affine. (Some authors call such a function “affine linear,” but the terminology is
misleading — it incorrectly suggests that an affine linear map is a special kind of linear map, when
in fact as noted above, an affine map is usually not linear at all! We will use the term “affine” in
order to avoid this potential confusion. More generally, an affine map A : Rn → Rm is a mapping
of the form A(x) = M(x) + b for x ∈ Rn, where M : Rn → Rm is a linear map and b ∈ Rm is
some fixed vector in the target space.)

(7) (Very important example) LetA be anym×nmatrix. ThenA defines a linear map LA : Rn → Rm

(“left-multiplication by A”) defined by

(1.6) LA(v) = Av

for v ∈ Rn. Note that this makes sense: the matrix product of A (an n×m matrix) and v (a column
vector in Rn, i.e., an n× 1 matrix) is an m× 1 matrix, i.e., a column vector in Rm. That LA is linear
is clear from some basic properties of matrix multiplication. For example, to check that (1.2) holds,
note that for v,w ∈ Rn,

LA(v + w) = A(v + w) = Av + Aw = LA(v) + LA(w),

and (1.3) is checked similarly.

As a special case of this last example, let A =

[
1 0
1 0

]
. Then

LA

([
x
y

])
=

[
1 0
1 0

] [
x
y

]
=

[
x
x

]
,

so in this case LA is just the linear function T of the third example above.
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2. THE REPRESENTING MATRIX OF A LINEAR TRANSFORMATION

The remarkable fact that matrix calculus so useful is that every lienar transformation T : Rn → Rm is of
the form LA for some suitable m×n matrix A; this matrix A is called the representing matrix of T , and we
may denote it by [T ].

(2.1) Thus A = [T ] is just another way of writing T = LA.

At the risk of belaboring the obvious, note that saying that a matrix A is the representing matrix of a
linear transformation T just amounts to saying that for any vector v in the domain of T ,

T (v) = Av

(the product on the right side is matrix multiplication), since T (v) = LA(v) = Av by definition of LA.

Proof. To see that every linear transformation T : Rn → Rm has the form LA for some m × n matrix A,
let’s consider the effect of T on an arbitrary vector

v =


x1

x2
...
xn


in the domain Rn. Let

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
0
...
1


be the standard coordinate unit vectors (in R3, these vectors are traditionally denoted i, j,k). Then

v =


x1

x2
...
xn

 = x1


1
0
...
0

+ x2


0
1
...
0

+ . . .+ xn


0
0
...
1

 = x1e1 + x2e2 + . . .+ xnen,

so

T (v) = T (x1e1 + x2e2 + . . .+ xnen) = T (x1e1) + T (x2e2) + . . .+ T (xnen)

(2.2) = x1T (e1) + x2T (e2) + . . .+ xnT (en).

Thus, to know what T (v) is for any v, all we need to know is the vectors T (e1), T (e2), . . . , T (en). Each of
these is a vector in Rm. Let’s write them as

T (e1) =


a11

a21
...

am1

 , T (e2) =


a12

a22
...

am2

 , . . . , T (en) =


a1n

a2n
...

amn

 ;
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thus aij is the ith component of the vector T (ej) ∈ Rm. By (2.2),

T (v) = x1T (e1) + x2T (e2) + . . .+ T (en) = x1


a11

a21
...

am1

+ x2


a12

a22
...

am2

+ . . .+ xn


a1n

a2n
...

amn



=


a11x1 + a12x2 + . . .+ a1nxn
a21x1 + a22x2 + . . .+ a2nxn

...
am1x1 + am2x2 + . . .+ amnxn

 =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn



x1

x2
...
xn

 = Av = LA(v),

where

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 .
�

Thus we have shown that T is just LA, where A is the m × n matrix whose columns are the vectors
T (e1), T (e2), . . . , T (en); equivalently:

(2.3)
The representing matrix [T ] is the matrix whose columns are the vectors T (e1), T (e2), . . . , T (en).

We might write this observation schematically as

[T ] =

 ↑ ↑ ↑
T (e1) T (e2) · · · T (en)
↓ ↓ ↓

 .
2.4. EXAMPLE. Let us determine the representing matrix [Id] of the identity map Id : Rn → Rn. By (2.3),
the columns of [Id] are Id(e1), Id(e2), . . . , Id(en), i.e., e1, e2, . . . , en. But the matrix whose columns are
e1, e2, . . . , en is just 

1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1

 ,
the n× n identity matrix I . Thus [Id] = I .

Note that two linear transformations T : Rn → Rm and U : Rn → Rm that have the same representing
matrix must in fact be the same transformation: indeed, if [T ] = A = [U ], then by (2.1), T = LA = U .

Finally, there is a wonderfully convenient fact that helps to organize many seemingly complicated compu-
tations very simply; for example, as we will see later, it permits a very simple and easily remembered state-
ment of the multivariable Chain Rule. Suppose that T : Rn → Rm and U : Rm → Rp are linear transforma-
tions. Then there is a composite linear transformation U ◦ T : Rn → Rp given by (U ◦ T )(v) = U(T (v))
for v ∈ Rn.
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Rn

U◦T

==
T // Rm U // Rp

2.5. THEOREM. [U ◦ T ] = [U ] [T ]. That is, the representing matrix of the composite of two linear transfor-
mations is the product of their representing matrices. (Note that this makes sense: [T ] is an m × n matrix
while U is a p×m matrix, so the matrix product [U ][T ] is a p×n matrix, as [U ◦T ] should be if it represents
a linear transformation Rn → Rp.)

Proof. To see why this is true, let A = [T ] and B = [U ]. By (2.1), this is just another way of saying that
T = LA and U = LB. Then for any vector v ∈ Rn,

(U ◦ T )(v) = U(T (v)) = LB(LA(v)) = B(Av) = (BA)v = LBA(v),

where in the fourth equality we have used the associativity of matrix multiplication. Thus U ◦ T = LBA,
which by (2.1) is just another way of saying that [U ◦ T ] = BA, i.e., that [U ◦ T ] = [U ] [T ]. �

In fact, this theorem is the reason that matrix multiplication is defined the way it is!

2.6. EXAMPLE. Consider the linear transformation Rθ that rotates the plane R2 counterclockwise by an
angle θ. Clearly,

Rθ(e1) = Rθ

([
1
0

])
=

[
cos θ
sin θ

]
,

by definition of the sine and cosine functions. Now e2 is perpendicular to e1, so Rθ(e2) should be a unit

vector perpendicular to Rθ(e1) =

[
cos θ
sin θ

]
, i.e., Rθ(e2) is one of the vectors[
− sin θ
cos θ

]
,

[
sin θ
− cos θ

]
.

From the picture it is clear that

Rθ(e2) =

[
− sin θ
cos θ

]
,

since the other possibility would also involve a reflection. By (2.3), the representing matrix [Rθ] of Rθ is
the matrix whose columns are Rθ(e1) and Rθ(e2); thus we have

(2.7) [Rθ] =

[
cos θ − sin θ
sin θ cos θ

]
.

Consider another rotation Rϕ by an angle ϕ; its representing matrix is given by

[Rϕ] =

[
cosϕ − sinϕ
sinϕ cosϕ

]
.

Similarly, the representing matrix of the rotation Rϕ+θ through the angle ϕ+ θ is given by

[Rϕ+θ] =

[
cos(ϕ+ θ) − sin(ϕ+ θ)
sin(ϕ+ θ) cos(ϕ+ θ)

]
.

Now the effect of rotating by an angle θ and then by an angle ϕ should be simply rotation by the angle ϕ+θ,
i.e.,

(2.8) Rϕ+θ = Rϕ ◦Rθ.
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Thus
[Rϕ+θ] = [Rϕ ◦Rθ].

By Theorem (2.5), this becomes
[Rϕ+θ] = [Rϕ] [Rθ],

i.e., [
cos(ϕ+ θ) − sin(ϕ+ θ)
sin(ϕ+ θ) cos(ϕ+ θ)

]
=

[
cosϕ − sinϕ
sinϕ cosϕ

] [
cos θ − sin θ
sin θ cos θ

]
.

After multiplying out the right hand side, this becomes[
cos(ϕ+ θ) − sin(ϕ+ θ)
sin(ϕ+ θ) cos(ϕ+ θ)

]
=

[
cosϕ cos θ − sinϕ sin θ − cosϕ sin θ − sinϕ cos θ
sinϕ cos θ + cosϕ sin θ − sinϕ sin θ + cosϕ sin θ

]
.

Comparing the entries in the first column of each matrix, we obtain

cos(ϕ+ θ) = cosϕ cos θ − sinϕ sin θ,(2.9)
sin(ϕ+ θ) = sinϕ cos θ + cosϕ sin θ.(2.10)

Thus from (2.8) along with Theorem (2.5) we recover the trigonometric sum identities.

3. AN APPLICATION: REFLECTIONS IN THE PLANE

Let lθ be a line through the origin in the plane; say its equation is y = mx, where m = tan θ; thus θ is
the angle of that the line lθ makes with the x-axis. Consider the linear transformation Fθ : R2 → R2 called
“reflection through lθ” defined geometrically as follows: intuitively, we view the line lθ as a mirror; then
for any vector v ∈ R2 (viewed as the position vector of a point P in the plane), Fθ(v) is the position vector
of the “mirror image” point of P on the other side of the line lθ. More precisely, write v as a sum of two
vectors:

(3.1) v = v|| + v⊥,

where v|| is a vector along the line lθ and v⊥ is perpendicular to lθ. Then Fθ(v) = v|| − v⊥.
We wish to determine an explicit formula for Fθ. This can be done using elementary plane geometry and

familiar facts about the dot product, but we seek here to outline a method that works in high dimensions as
well, when it is not so easy to visualize the map geometrically.

To this end, note that we already know a formula for Fθ when θ = 0: indeed, in that case, the line lθ is
just the x-axis, and the reflection F0 is given by

F0

([
x
y

])
=

[
x
−y

]
.

For our purposes, though, a more useful (but equivalent) way of saying this is via the representing matrix
[F0], which we now compute. The representing matrix [F0] is the matrix whose columns are F0(e1) and
F0(e2). It is obvious that F0(e1) = e1 and F0(e2) = −e2, but let’s check it anyway. It we take v = e1 in
equation (3.1), we see that v|| = e0 (v = e1 is on the line l0, the x-axis), so v⊥ = 0, the zero vector; thus
F0(e1) = v|| − v⊥ = e1 − 0 = e1. Similarly, if we take v = e2 in equation (3.1), we find v|| = 0 while
v⊥ = e2 (v = e2 is itself perpendicular to the x-axis), so F0(e2) = v|| − v⊥ = 0− e2 = −e2. Thus [F0] is
the matrix whose columns are e1 and −e2, i.e.,

(3.2) [F0] =

[
1 0
0 −1

]
.
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To use this seemingly trivial observation to compute Fθ, we note that Fθ can be written as a composition
of three linear transformations:

(3.3) Fθ = Rθ ◦ F0 ◦R−θ,

where Rθ is the “rotation by θ” operator whose representing matrix we already determined in equation
(2.7). That is, in order to reflect through the line lθ, we can proceed as follows: first, rotate the whole plane
through an angle−θ; this operation moves the mirror line lθ to the x-axis. We now reflect the plane through
the x-axis, which we know how to do by equation (3.2). Finally, we rotate the whole plane back through
an angle of θ in order to “undo” the effect of our original rotation through an angle of −θ; this operation
restores the line in which we are interested (the “mirror”) to its original position, making an angle θ with
the x-axis.

By Theorem (2.5), we can now compute [Fθ] easily:

[Fθ] = [Rθ ◦ F0 ◦R−θ] = [Rθ][F0][R−θ],

i.e.,

[Fθ] =

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

] [
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
=

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

] [
cos θ sin θ
− sin θ cos θ

]
;

multiplying out the matrices yields

[Fθ] =

[
cos2 θ − sin2 θ 2 cos θ sin θ
2 cos θ sin θ sin2 θ − cos2 θ

]
.

Using the identities (2.9) with ϕ = θ, we finally conclude that

(3.4) [Fθ] =

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
.

To see that this makes some sense geometrically, note that the first column of the matrix [Fθ] is the same
as the first column of [R2θ], the representing matrix of the rotation through an angle 2θ. But for any linear
map T : R2 → R2, the first column of [T ] is just the vector T (e1). Thus the equality of the first columns of
[Fθ] and [R2θ] just means that Fθ(e1) = R2θ(e1), which makes geometric sense: if you reflect the horizontal
vector e1 through the line lθ, the resulting vector should surely be a unit vector making an angle θ with the
line lθ, hence making an angle 2θ with the x-axis.

Although we will not make serious use of the striking power of the technique illustrated above, we con-
clude by showing how the algebra of linear transformations, once codified via their representing matrices,
can lead to illuminating geometric insights. We consider a very simple example to illustrate. Let us rewrite
equation (3.4):

[Fθ] = [Fθ] =

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
=

[
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

] [
1 0
0 −1

]
,

the right hand side of which we immediately recognize as [R2θ][F0]. But by Theorem (2.5), the latter is just
[R2θ ◦ F0]. Thus [Fθ] = [R2θ ◦ F0]. Since two linear transformations with the same representing matrix are
the same, it follows that Fθ = R2θ ◦ F0. Now compose on the right by F0 and use associativity of function
composition:

(3.5) Fθ ◦ F0 = (R2θ ◦ F0) ◦ F0 = R2θ ◦ (F0 ◦ F0).
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Finally, observe that F0 ◦ F0 = Id, the identity transformation. (This is obvious geometrically, but we can
prove it carefully by using the representing matrix: by Theorem (2.5) and equation (3.2),

[F0 ◦ F0] = [F0][F0] =

[
1 0
0 −1

] [
1 0
0 −1

]
=

[
1 0
0 1

]
= I = [Id],

so F0 ◦ F0 = Id.) Then equation (3.5) becomes

(3.6) Fθ ◦ F0 = R2θ.

Thus we have proved:

3.7. THEOREM. The effect of reflection of the plane through the x-axis followed by reflection of the plane
through the line lθ making an angle θ with the x-axis is just that of rotation of the plane through the angle
2θ.

You should draw pictures and convince yourself of this fact.
In fact, more is true: for any line λ in the plane, let Fλ : R2 → R2 denote reflection through the line λ.

3.8. THEOREM. For any two lines α and β in the plane, the composite Fβ ◦Fα is the rotation through double
the angle between the lines α and β.

The proof is immediate: we merely set up our coordinate axes so that the x-axis is the line α; then we
have reduced to the case of Theorem (3.7).

4. THE ALGEBRA OF LINEAR TRANSFORMATIONS

We will denote the collection of all linear maps T : Rn → Rm by L(Rn,Rm). We can add two elements
of L(Rn,Rm) in an obvious way:

4.1. DEFINITION. If T, U ∈ L(Rn,Rm), then T + U is the mapping given by (T + U)(v) = T (v) + U(v)
for all vectors v ∈ Rn.

You should check that T + U is indeed linear.

4.2. THEOREM. Let T, U ∈ L(Rn,Rm). Then

[T + U ] = [T ] + [U ].

In words, the representing matrix of the sum of two linear transformations is the sum of their representing
matrices. The proof is a simple exercise using the definition of the representing matrix and the definition of
matrix addition.

4.3. DEFINITION. Given a linear map T : Rn → Rm and a scalar c ∈ R, we define a linear map cT from
Rn to Rm (called scalar multiplication of T by c) by (cT )(v) = c T (v) for all v ∈ Rn.

As above, you should check that cT is linear, and prove the following theorem:

4.4. THEOREM. Let T ∈ L(Rn,Rm), and let c ∈ R. Then

[cT ] = c[T ].

Note that the two definitions above endow the set L(Rn,Rm) with the structure of a vector space. The
definition of matrix addition and scalar multiplication endow the space Mm×n(R) of m by n matrices (with
real entries) with the structure of a vector space. There is a mapping [ ] : L(Rn,Rm) → Mm×n(R) that
sends a linear transformation T to its representing matrix [T ]. The two simple theorems above merely say
that this mapping [ ] is itself a linear map, using the vector space structures on its domain and target that we
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defined above! But [ ] is even better than just a linear map: it has an inverse L( ) : Mm×n(R)→ L(Rn,Rm)
that sends a matrix A ∈ Mm×n(R) to the linear transformation LA : Rn → Rm given by LA(v) = Av. The
fact that [ ] and L( ) are inverses of each other is just the observation (2.1). Since [ ] : L(Rn,Rm)→ Mm×n
is linear, any “linear” question about linear maps from Rn to Rm (i.e., any question involving addition of
such linear maps or multiplication by a scalar) can be translated via [ ] to a question about matrices, which
are much more concrete and better suited to computation than abstract entities like linear transformations;
the fact that [ ] has a linear inverse L( ) means that nothing is lost in the translation.

The mapping [ ] is a classic example of an isomorphism. Formally, an isomorphism of two vector spaces
V and W is just a linear map V → W with a linear inverse W → V . The idea is that V and W are
to all intents and purposes “the same,” at least as far as linear algebra is concerned. An isomorphism of
an abstract vector space V with a more concrete and readily understood vector space W makes V just as
easy to understand as W : we simply use the isomorphism to translate a question about V to an equivalent
question about W , solve our problem in W (where is is easy), then use the inverse of the isomorphism to
translate our solution back to V .

While we will not make serious use of the idea of isomorphism (at least not explicitly), there is one
important example that will use, and in any case the idea is so important throughout mathematics that is is
worth making it explicit at this point. We will show that the space of linear maps L(R,Rm) of linear maps
from the real line to Rm is “the same” as the space Rm itself. In fact, any linear map T : R → Rn has
a representing matrix [T ] ∈ Mm×1 in the space of m by 1 matrices; but an m by 1 matrix (m rows, one
column) is just a column vector of length m, i.e., an element of Rm. What does this representing matrix [T ]
look like? Recall that its columns are just the values that the linear map T takes on the standard coordinate
vectors. But in R, there is only one standard coordinate vector: e1 = 1, the real number 1. Thus the first
(and only!) column of [T ] is just the vector T (1) ∈ Rm.

We can summarize as follows:

(4.5)

We can view any linear map T : R→ Rm as a column vector in Rm; we do so by associating to the linear
map T the vector T (1) ∈ Rm — which, when viewed as an m by 1 matrix, is just the representing matrix
[T ].

Another way of arriving at the same conclusion is the following. If T : R → Rm is any linear map
from the real line to Rm, note that for any x ∈ R, T (x) = T (x · 1) = xT (1), by (1.3); equivalently,
T (x) = T (1)x, which just says that T = LT (1), i.e. (by (2.1)), [T ] = T (1).


