Math 13 Fall 2009 Homework 1

Due Friday October 2, 2009 in class.

1) Show that the area of the parallelogram spanned by \vec{a} and \vec{b} is given by: $\sqrt{\|\vec{a}\|^{2}\|\vec{b}\|^{2}-(\vec{a} \cdot \vec{b})^{2}}$ Show that the formula holds both for vectors in \mathbb{R}^{2} and in \mathbb{R}^{3}, depending on how you approach the problem you might have to treat the two cases seperatly.
2) Show that any three vectors \vec{a}, \vec{b} and \vec{c} satisfy:

$$
\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}
$$

3.) Page 839, Number 64

Find the parametric equations for the line through the point $(0,1,2)$ that is perpendicular to the line $x=1+t, y=1-t, z=2 t$ and intersects this line.
4.) Page 821 , Number 42

The vector $\operatorname{orth}_{\mathbf{a}} \mathbf{b}=\mathbf{b}-\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is called the Orthogonal Projection of \mathbf{b} with respect to \mathbf{a}. It is not hard to check that $\operatorname{orth}_{\mathbf{a}} \mathbf{b}$ is orthogonal to a (see problem 41 on page 821 in the text). For the vectors $\mathbf{a}=\langle 1,2\rangle$ and $\mathbf{b}=\langle-4,1\rangle$ find orth $_{\mathbf{a}} \mathbf{b}$ and illustrate (the relationship between these vectors) by drawing the vectors $\mathbf{a}, \mathbf{b}, \operatorname{proj}_{\mathbf{a}} \mathbf{b}$ and $\operatorname{orth}_{\mathbf{a}} \mathbf{b}$.

