Math 13 Fall 2009 Homework 4. Due Friday October 23 11:15am
1.) (1 point) Is it possible to have a continuous differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ with two different local maxima and no local minimum? Explain your reasoning in full sentences. You are not required to write a formal proof, but a well written 2-3 sentence explanation of your thought process is mandatory.
2.) (5 points) Find all local maxima, local minima and saddle points of the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
g(x, y)=-2 x^{4}+4 x^{2}-y^{2} .
$$

Compare your findings to your explanation from problem 1. Use the following link
http://ocw.mit.edu/ans7870/18/18.02/f07/tools/FunctionsTwoVariables.html
to plot and print a graph of the function on an appropriate domain which will illustrate clearly all maxima and minima of g. Write 2-3 sentences explaining what is different when dealing with functions of 2 variables as opposed to functions of 1 variable.
3.) (4 points) Find the volume of the solid bounded by $z=2+x^{2}+x(y-2)^{2}$ $x=y, x=1, y=3$ and $z=-1$.

