Math 13, Spring 2007

Vector Calculus

General Information Syllabus Homework Assignments Exam Related


Syllabus

The following is a tentative syllabus for the course.  X-hours may occasionally be used in place of or in addition to scheduled lectures.


Lectures Sections in Text Brief Description
  3/28 1.2, 1.3 Dot and cross products
  3/30 1.4 Non-cartesian coordinate systems
  4/2 2.3, 2.4 Differentiation, Planes and Curves
  4/4 2.4, 2.5 Planes and Curves, Properties of the Derivative
  4/6 2.5, 2.6 Gradients & directional derivatives
  4/9 3.5 Implicit and Inverse function theorems
  4/11 4.1, 4.2 Acceleration, Arclength
  4/13 4.3 Vector fields
  4/16 4.4 Divergence and Curl
  4/18 5.1 - 5.3 Double integrals
  4/20 5.4 Changing the order of integration
  4/23 5.5 Triple integrals
  4/25 6.1 Geometry of maps
  4/27 6.2 Change of variables
  4/30 7.1, 7.2 Path integrals, Line integrals
  5/2 7.2, 7.3 Line integrals, Parametrized surfaces
  5/4 7.4 Surface area
  5/7 7.4, 7.5 Surface area, Scalar surface integrals
  5/9 7.5 Scalar surface integrals
  5/11 7.6 Vector surface integrals
  5/14 8.1 Green's theorem
  5/16 8.2 Stokes' theorem
  5/18 8.2 Stokes' theorem
  5/21 8.3 Conservative vector fields
  5/23 8.4 Gauss' divergence theorem
  5/25 8.4 Gauss' divergence theorem
  5/30 Summary Review