Slope Fields and Euler's Method

11/02/2005

- We are going to study the geometric information that we get from a differential equation that gives an explicit formula for the derivative.
- Consider the differential equation

$$\frac{dy}{dx} = F(x,y); y(x_0) = y_0.$$

• The equation says that at any point (x,y) in the plane we can compute the slope $\frac{dy}{dx}$ of the tangent line through that point.

- ullet At each point (x,y) in the plane, we can draw a short straight line whose slope is F(x,y) from the differential equation.
- The resulting two-dimensional plot of tangent lines is called the slope field or direction field of the differential equation.

• Let $F(x,y) = 8\sqrt{y}$

Point (x,y)	Slope $F(x,y)$
(0,0)	0
$\boxed{(1,1)}$	8
$\boxed{(1,4)}$	16

• Can you guess the shape of the solution curve that passes through (0, 0)?

• Can you guess the shape of the solution curve that passes through (0, 0)?

• We will consider the differential equation $\frac{dy}{dx} = 24x^3$.

• We will consider the differential equation $\frac{dy}{dx} = 24x^3$.

Euler's Method

• Assume that the following IVP is given:

$$\frac{dy}{dx} = F(x,y); P_0 = (x_0, y_0)$$

- The method consists of starting at the initial point P0=(x0,y0), specifying an increment x, and plotting a sequence of line segments joined end to end.
- The slope of each segment is the value of the derivative at the initial point of the segment.

Theorem. Given the Initial Value Problem

$$\frac{dy}{dx} = F(x, y); P0 = (x0, y0),$$

and Δx specified, then the endpoints of the line segments that make up the polygonal path in Euler's Method are

$$x_{n+1} = x_n + \Delta x$$

$$y_{n+1} = y_n + \Delta x F(x_n, y_n)$$

- Let $\frac{dy}{dx} = x y$; y(0) = 1.
- ullet On the interval [0,1] approximate y(1) with two steps of size 1/2.
- Here F(x,y) = x y and $\Delta x = 1/2$.

- Let $\frac{dy}{dx} = x y$; y(0) = 1.
- On the interval [0,1] approximate y(1) with two steps of size 1/2.
- Here F(x,y) = x y and $\Delta x = 1/2$.
- Thus, $y_1 = y_0 + \Delta x F(x_0, y_0) = 1 + (1/2)(-1) = 1/2$;
- $y_2 = y_1 + \Delta x F(x_1, y_1) = 1/2 + (1/2)(0) = 1/2$.
- Therefore $y(1) \simeq 1/2$.

Case Study: Population Modeling

• **Objective:** Predict the size of the US population well into the 21st century.

- Translate real-world problems into mathematical models.
- Subject the models to mathematical analysis and prediction.
- Draw conclusions from the models.
- Test the conclusions in the laboratory and compare the results with the original real-world data.
- Revise the model as necessary and repeat the above steps until the model is a reliable predictor of real-world observations.

The Malthus and Verhulst Models

- The **Malthus** model for growth of a population assumes an ideal environment.
- Resources are unlimited, disease is constrained, and individuals are happy.
- The population increases at a rate proportional to the number of individuals present.

- The Verhulst model assumes that the growth rate declines, from a value k when conditions are very favorable, to the value 0 when the population has increased to the maximum value M that the environment can support.
- Takes into account the effects of a limiting environment.
- It is a more realistic model.

• We will use only the populations recorded in the census of 1790 and of 1990.

Year	Population
1790	3.9
1990	250

The Malthus Model: Exponential Growth

• Starting with a population of 3.9 million in 1790, we have the Initial Value Problem

$$\frac{dQ}{dt} = kQ; Q90) = 3.9$$

The Malthus Model: Exponential Growth

• Starting with a population of 3.9 million in 1790, we have the Initial Value Problem

$$\frac{dQ}{dt} = kQ; Q90) = 3.9$$

• Have fun with the applet!

The Verhulst Model: Limited Exponential Growth

ullet The Verhulst model assumes that the growth rate declines, from a value k when conditions are very favorable, to the value 0 when the population has increased to the maximum value M that the environment can support.

• It replaces the growth constant k by the expression

$$k\frac{M - Q(t)}{M}$$

• This leads to the differential equation

$$\frac{dQ}{dt} = k \frac{M - Q}{M} Q.$$

- The factor $\frac{M-Q}{M}$ that has a value between 0 and 1 is sometimes called the unrealized potential for population growth.
- When Q is small it has a value close to 1, and the growth of the population is essentially exponential.
- As Q approaches its asymptotic limiting value, however, the factor $\frac{M-Q}{M}$ is close to zero, and the population grows ever more slowly.

Objective

- The U.S. population cannot sustain exponential growth indefinitely.
- The Malthus model gives unrealistic projections of the population over the next century.
- We would like to use the Verhulst model instead to make such projections.
- We also need to assume that Q(0) = 3.9 million, and M = 750 million, the maximum value of the population $(0 \le Q(t) \le M)$.

HAVE FUN!

• And don't forget to use the applets!