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• We are going to study the geometric information that we get from
a differential equation that gives an explicit formula for the deriva-
tive.

• Consider the differential equation

dy

dx
= F (x, y); y(x0) = y0.

• The equation says that at any point (x, y) in the plane we can
compute the slope dy

dx of the tangent line through that point.
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• At each point (x, y) in the plane, we can draw a short straight
line whose slope is F (x, y) from the differential equation.

• The resulting two-dimensional plot of tangent lines is called the
slope field or direction field of the differential equation.
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• Let F (x, y) = 8
√

y

Point (x, y) Slope F (x, y)
(0, 0) 0
(1,1) 8
(1,4) 16
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• Can you guess the shape of the solution curve that passes through
(0, 0)?
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• Can you guess the shape of the solution curve that passes through
(0, 0)?
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Example

• We will consider the differential equation dy
dx = 24x3.
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Example

• We will consider the differential equation dy
dx = 24x3.
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Euler’s Method

• Assume that the following IVP is given:

dy

dx
= F (x, y); P0 = (x0, y0)

• The method consists of starting at the initial point P0 = (x0, y0),
specifying an increment x, and plotting a sequence of line segments
joined end to end.

• The slope of each segment is the value of the derivative at the
initial point of the segment.
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Theorem. Given the Initial Value Problem

dy

dx
= F (x, y);P0 = (x0, y0),

and ∆x specified, then the endpoints of the line segments that make
up the polygonal path in Euler’s Method are

xn+1 = xn + ∆x

yn+1 = yn + ∆xF (xn, yn)
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Example

• Let dy
dx = x− y; y(0) = 1.

• On the interval [0, 1] approximate y(1) with two steps of size 1/2.

• Here F (x, y) = x− y and ∆x = 1/2.
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Example

• Let dy
dx = x− y; y(0) = 1.

• On the interval [0, 1] approximate y(1) with two steps of size 1/2.

• Here F (x, y) = x− y and ∆x = 1/2.

• Thus, y1 = y0 + ∆xF (x0, y0) = 1 + (1/2)(−1) = 1/2;

• y2 = y1 + ∆xF (x1, y1) = 1/2 + (1/2)(0) = 1/2.

• Therefore y(1) ' 1/2.
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Case Study: Population Modeling

• Objective: Predict the size of the US population well into the
21st century.
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• Translate real-world problems into mathematical models.

• Subject the models to mathematical analysis and prediction.

• Draw conclusions from the models.

• Test the conclusions in the laboratory and compare the results with
the original real-world data.

• Revise the model as necessary and repeat the above steps until the
model is a reliable predictor of real-world observations.
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The Malthus and Verhulst Models

• The Malthus model for growth of a population assumes an ideal
environment.

• Resources are unlimited, disease is constrained, and individuals are
happy.

• The population increases at a rate proportional to the number of
individuals present.
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• The V erhulst model assumes that the growth rate declines, from
a value k when conditions are very favorable, to the value 0 when
the population has increased to the maximum value M that the
environment can support.

• Takes into account the effects of a limiting environment.

• It is a more realistic model.
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• We will use only the populations recorded in the census of 1790
and of 1990.

Year Population

1790 3.9
1990 250
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The Malthus Model: Exponential Growth

• Starting with a population of 3.9 million in 1790, we have the
Initial Value Problem

dQ

dt
= kQ; Q90) = 3.9
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The Malthus Model: Exponential Growth

• Starting with a population of 3.9 million in 1790, we have the
Initial Value Problem

dQ

dt
= kQ; Q90) = 3.9

• Have fun with the applet!
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The Verhulst Model: Limited Exponential
Growth

• The Verhulst model assumes that the growth rate declines, from
a value k when conditions are very favorable, to the value 0 when
the population has increased to the maximum value M that the
environment can support.

• It replaces the growth constant k by the expression

k
M −Q(t)

M
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• This leads to the differential equation

dQ

dt
= k

M −Q

M
Q.
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• The factor M−Q
M that has a value between 0 and 1 is sometimes

called the unrealized potential for population growth.

• When Q is small it has a value close to 1, and the growth of the
population is essentially exponential.

• As Q approaches its asymptotic limiting value, however, the factor
M−Q

M is close to zero, and the population grows ever more slowly.
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Objective

• The U.S. population cannot sustain exponential growth indefi-
nitely.

• The Malthus model gives unrealistic projections of the population
over the next century.

• We would like to use the Verhulst model instead to make such
projections.

• We also need to assume that Q(0) = 3.9 million, and M = 750
million, the maximum value of the population (0 ≤ Q(t) ≤ M).
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HAVE FUN!

• And don’t forget to use the applets!
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