Continuity

10/07/2005

Interior Point

An interior point of a set of real numbers is a point that can be enclosed in an open interval that is contained in the set.

Definition

- A function is continuous at an interior point c of its domain if $\lim _{x \rightarrow c} f(x)=f(c)$.
- If it is not continuous there, i.e. if either the limit does not exist or is not equal to $f(c)$ we will say that the function is discontinuous at c.

Note:

1. The function f is defined at the point $x=c$,
2. The point $x=c$ is an interior point of the domain of f,
3. $\lim _{x \rightarrow c} f(x)$ exists, call it L, and
4. $L=f(c)$.

Example

Is the function

$$
f(x)= \begin{cases}x^{2} & x<1 \\ x^{3}+2 & 1 \leq x\end{cases}
$$

continuous at $x=1$?

Right Continuity and Left Continuity

- A function f is right continuous at a point c if it is defined on an interval $[c, d]$ lying to the right of c and if $\lim _{x \rightarrow c^{+}} f(x)=f(c)$.
- Similarly it is left continuous at c if it is defined on an interval $[d, c]$ lying to the left of c and if $\lim _{x \rightarrow c^{-}} f(x)=f(c)$.

Definition

A function f is continuous at a point $x=c$ if c is in the domain of f and:

1. If $x=c$ is an interior point of the domain of f, then $\lim _{x \rightarrow c} f(x)=f(c)$.
2. If $x=c$ is not an interior point of the domain but is an endpoint of the domain, then f must be right or left continuous at $x=c$, as appropriate.

- A function f is said to be a continuous function if it is continuous at every point of its domain.
- A point of discontinuity of a function f is a point in the domain of f at which the function is not continuous.

Facts

- All polynomials,
- Rational functions,
- Trigonometric functions,
- The absolute value function, and
- The exponential and logarithm functions
are continuous.

Example

- The rational function $f(x)=\frac{x^{2}-4}{x-2}$ is a continuous function.
- The domain is all real numbers except 2 .
- $\lim _{x \rightarrow 2} f(x)=4$ exists.

It has a continuous extension

$$
F(x)= \begin{cases}f(x) & \text { if } x \text { is in the domain of } f \\ 4 & \text { if } x=2\end{cases}
$$

Example

The function

$$
f(x)= \begin{cases}\sin x & x \neq \pi / 3 \\ 0 & x=\pi / 3\end{cases}
$$

is discontinuous at $\pi / 3$.
We can "remove" the discontinuity by redefining the value of f at $\pi / 3$.

Definition

- If c is a discontinuity of a function f, and if $\lim _{x \rightarrow c} f(x)=L$ exists, then c is called a removable discontinuity. The discontinuity is removed by defining $f(c)=L$.
- If f is not defined at c but $\lim _{x \rightarrow c} f(x)=L$ exists, then f has a continuous extension to $x=c$ by defining $f(c)=L$.

Example

Suppose that $f(x)$ is defined piecewise as

$$
f(x)= \begin{cases}-x^{2}+1 & x<2 \\ x+k & x>2\end{cases}
$$

Let us find a value of the constant k such that f has a continuous extension to $x=2$.

The Intermediate Value Theorem

If a function f is continuous on a closed interval $[a, b]$, and if $f(a)<L<f(b)$ (or $f(a)>L>f(b))$, then there exists a point c in the interval $[a, b]$ such that $f(c)=L$.

Example

Show that the equation $x^{5}-3 x+1=0$ has a solution in the interval $[0,1]$.

Example

Does the equation $1 / x=0$ have a solution?

The Tangent Line and Their Slope

- The Tangent Line Problem Given a function $y=f(x)$ defined in an open interval and a point x_{0} in the interval, define the tangent line at the point $\left(x_{0}, f\left(x_{0}\right)\right)$ on the graph of f.

Example

Find the equations of the tangent lines to the graph of $f(x)=$ $\sqrt{1-x^{2}}$ at the points $(0,1)$ and $\left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}\right)$.

Example

$$
\text { Let } f(x)=x^{2} \text {. }
$$

Definition

Given a function f and a point x_{0} in its domain, the slope of the tangent line at the point $\left(x_{0}, f\left(x_{0}\right)\right)$ on the graph of f is

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

Example

Given $f(x)=\sqrt{x}$, find the equation of the tangent line at $x=4$.

Example

Find the tangent line to the graph of $f(x)=x^{1 / 3}$ at $x=0$.

Example

Let f be the piecewise defined function

$$
f(x)= \begin{cases}2-x^{2} & x \leq 1 \\ x^{3} & x>1\end{cases}
$$

Is the function continuous, and does it have a tangent line at $x=1$?

