2.10 The Mean Value Theorem and 2.11 Implicit Differentiation

Mathematics 3 Lecture 11 Dartmouth College

January 27, 2010

Derivatives of the Trig Functions (cont'd)

Before we begin, let's practice an example problem involving trig functions...

Example 1: Find the derivative of the function

$$y = f(x) = \sqrt{\cos(x^2 - 5x + 3)}.$$

by using Leibniz notation for the derivatives involved.

Derivatives of the Trig Functions (cont'd)

Before we begin, let's practice an example problem involving trig functions...

Example 1: Find the derivative of the function

$$y = f(x) = \sqrt{\cos(x^2 - 5x + 3)}.$$

by using Leibniz notation for the derivatives involved.

Answer:
$$\frac{dy}{dx} = \frac{(5x-2)\sin(x^2-5x+3)}{2\sqrt{\cos(x^2-5x+3)}}$$

The Mean Value Theorem

Theorem 1. (p.161) Suppose that f is defined and continuous on a closed interval [a, b], and suppose that f' exists on the open interval (a, b). Then there exists a point c in (a, b) such that

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

Examples where the Mean Value Theorem fails...

Example 2: Does the function

$$f(x) = x^{\frac{2}{3}}$$

satisfy the Mean Value Theorem on [-1,1]. Why or why not?

Verify the conclusion of the Mean Value Theorem for the function

$$f(x) = x^3 + 3x^2 + 3x$$

on the interval [-3, 1].

Verify the conclusion of the Mean Value Theorem for the function

$$f(x) = x^3 + 3x^2 + 3x$$

on the interval [-3, 1].

Monotonicity of Functions on Intervals

Recall: An interval I is a set of real numbers lying between a and b, where a and b are real numbers or $\pm \infty$ (and may/may not include a or b, e.g., $I = [0, 5), (-\infty, 6), [-1, 2]$, etc.

Suppose that the function f is defined on an interval I, and let x_1 and x_2 denote points in I:

- 1. f is increasing on I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.
- 2. f is decreasing on I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.
- 3. f is nondecreasing on I if $f(x_1) \leq f(x_2)$ whenever $x_1 < x_2$.
- 4. f is nonincreasing on I if $f(x_1) \ge f(x_2)$ whenever $x_1 < x_2$.

Testing Monotonicity via Derivatives

Theorem. Let I be an interval and let J be the open interval consisting of I minus its endpoints (if any). Suppose that f is continuous on I and differentiable on J. Then

1. If f'(x) > 0 for every $x \in J$, then f is increasing on I.

2. If f'(x) < 0 for every $x \in J$, then f is decreasing on I.

3. If $f'(x) \ge 0$ for every $x \in J$, then f is nondecreasing on I.

4. If $f'(x) \leq 0$ for every $x \in J$, then f is nonincreasing on I.

Find the intervals on which the function

$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

is increasing and those on which it is decreasing.

Find the intervals on which the function

$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

is increasing and those on which it is decreasing.

Answer: f is increasing on $(-1,0) \cup (2,+\infty)$ and decreasing on $(-\infty,-1) \cup (0,2)$.

On what interval(s) is the function

$$f(x) = 2x - \sin(x)$$

increasing or decreasing (if any)?

On what interval(s) is the function

$$f(x) = 2x - \sin(x)$$

increasing or decreasing (if any)?

Answer: $f'(x) = 2 - \cos(x) > 0$ always! $\Rightarrow f$ is always increasing!

The Extreme Value Theorem

Theorem. If f is continuous on a closed interval [a, b], then there is a point c_1 in the interval where f assumes its maximum value, i.e. $f(x) \leq f(c_1)$ for every x in [a, b], and a point c_2 where f assumes its minimum value, i.e. $f(x) \geq f(c_2)$ for every x in [a, b].

The Extreme Value Theorem

Theorem. If f is continuous on a closed interval [a, b], then there is a point c_1 in the interval where f assumes its maximum value, i.e. $f(x) \leq f(c_1)$ for every x in [a, b], and a point c_2 where f assumes its minimum value, i.e. $f(x) \geq f(c_2)$ for every x in [a, b].

Zen: A continuous function on a closed and bounded interval [a, b] always has extreme values (i.e., max and min) somewhere in the interval. This is an "existence theorem" and is very hard to prove, in generality (Math 35/54/63).

The Extreme Value Theorem

Theorem. If f is continuous on a closed interval [a, b], then there is a point c_1 in the interval where f assumes its maximum value, i.e. $f(x) \leq f(c_1)$ for every x in [a, b], and a point c_2 where f assumes its minimum value, i.e. $f(x) \geq f(c_2)$ for every x in [a, b].

Zen: A continuous function on a closed and bounded interval [a, b] always has extreme values (i.e., max and min) somewhere in the interval. This is an "existence theorem" and is very hard to prove, in generality (Math 35/54/63).

Important Question: How do we FIND these extreme values?

Finding Extreme Values with **Derivatives**

Theorem. If f is defined in an open interval (a, b) and achieves a maximum (or minimum) value at a point $c \in (a, b)$ where f'(c)exists, then f'(c) = 0.

Zen: An extreme value (\max/\min) of a differentiable function in an open interval (a, b) must occur where the graph has a horizontal tangent line. But, just because f'(c) = 0 does NOT mean you have an extreme value at x = c. Moreover, on a closed interval [a, b] we have to also check the endpoints for possible max/mins.

Def: A point x = c where f'(c) = 0, or *does not exist*, is called a critical point of the function f.

For the function

$$f(x) = 2x^3 - 6x^2 - 18x + 1,$$

let us find the points in the interval [-4, 4] where the function assumes its maximum and minimum values.

For the function

$$f(x) = 2x^3 - 6x^2 - 18x + 1,$$

let us find the points in the interval [-4, 4] where the function assumes its maximum and minimum values.

x	f(x)
-1	11
3	53
-4	-151
4	-39

Rolle's Theorem (general version)

Theorem. Suppose that the function g is continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If

g(a) = g(b)

then there exists a point c in the open interval (a, b) where g'(c) = 0.

Show that the equation $x^3 + x - 1 = 0$ has exactly one real root.

2.11: Implicit Differentiation

- Problem: Many interesting smooth curves in the plane are NOT the graphs of functions, but we still need to find tangent lines at various points (e.g., curved path of a robot in a factory.)
- A circle of radius 1, for example, does not pass the "vertical line test" and hence is not the graph of a function.
- It is, however, the graph of the equation $x^2 + y^2 1 = 0$.

- The equation $x^3 8xy + y^3 = 1$ resists our most clever efforts to explicitly solve for y as a function of x.
- We will see how to overcome this difficulty using a very important technique called implicit differentiation.

- The general setting for our discussion of implicitly defined functions is an equation F(x, y) = 0, where F is an expression containing the two variables x and y.
- An (unknown...) function y = f(x) is implicitly defined by the equation if

$$F(x, f(x)) = 0$$

for x in some (possibly small) interval I.

• **GOAL:** Find the derivative $\frac{dy}{dx}$ of y = f(x) without explicitly solving the equation for y! (Is that totally cool or what!? \bigcirc)

Example 8

- The functions $y = \sqrt{1-x^2}$ and $y = -\sqrt{1-x^2}$ are implicitly defined by the equation $x^2 + y^2 = 1$.
- Consider one of the functions y = f(x) defined implicitly by the equation $x^2 + y^2 = 1$. In either case, we have that

Example 8 (cont'd)

$$x^2 + y^2 = 1$$

Example 8 (cont'd)

$$x^{2} + y^{2} = 1$$
$$\frac{d}{dx}(x^{2} + y^{2}) = \frac{d}{dx}(1)$$

Example 8 (cont'd)

$$x^{2} + y^{2} = 1$$

$$\frac{d}{dx}(x^{2} + y^{2}) = \frac{d}{dx}(1)$$

$$2x + \frac{d}{dx}(y^{2}) = 0$$

Example 8 (cont'd)

$$x^{2} + y^{2} = 1$$

$$\frac{d}{dx}(x^{2} + y^{2}) = \frac{d}{dx}(1)$$

$$2x + \frac{d}{dx}(y^{2}) = 0$$

$$2x + 2y\frac{dy}{dx} = 0$$

Example 8 (cont'd)

Given the equation $x^2 + y^2 = 1$, we think of the (unknown...) function y = f(x) implicitly defined by the equation and differentiate it anyway using the Chain Rule!

$$x^{2} + y^{2} = 1$$

$$\frac{d}{dx}(x^{2} + y^{2}) = \frac{d}{dx}(1)$$

$$2x + \frac{d}{dx}(y^{2}) = 0$$

$$2x + 2y\frac{dy}{dx} = 0$$

$$\implies \frac{dy}{dx} = -\frac{x}{y}$$

30

Example 9

Use implicit differentiation to find the equation of the tangent line to the graph of the smooth curve defined implicitly by the equation

$$F(x,y) = xy^2 + x^2y - 6 = 0$$

at the point (1, 2).

Example 10

Use implicit differentiation to find the derivative dy/dx of any function y = f(x) implicitly defined by the equation

$$\cos x + \frac{y}{x} = \sin y + \frac{x}{y}$$

Example 10

Use implicit differentiation to find the derivative dy/dx of any function y = f(x) implicitly defined by the equation

$$\cos x + \frac{y}{x} = \sin y + \frac{x}{y}$$

Answer:
$$\frac{dy}{dx} = \frac{y^3 + x^2y + x^2y^2\sin(x)}{x^3 + xy^2 - x^2y^2\cos(y)}$$

Return to the equation $x^3 - 8xy + y^3 = 1$ with which we begin this section. Find the slope at the points on the curve for which x = 1.

http://brownsharpie.courtneygibbons.org/?p=728