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Derivatives of the Trig Functions (cont’d)

Before we begin, let’s practice an example problem involving trig
functions...

Example 1: Find the derivative of the function

y = f(x) =
√

cos(x2 − 5x + 3).

by using Leibniz notation for the derivatives involved.
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Derivatives of the Trig Functions (cont’d)

Before we begin, let’s practice an example problem involving trig
functions...

Example 1: Find the derivative of the function

y = f(x) =
√

cos(x2 − 5x + 3).

by using Leibniz notation for the derivatives involved.

Answer: dy
dx = (5x−2) sin(x2−5x+3)

2
√

cos(x2−5x+3)
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The Mean Value Theorem

Theorem 1. (p.161) Suppose that f is defined and continuous on
a closed interval [a, b], and suppose that f ′ exists on the open interval
(a, b). Then there exists a point c in (a, b) such that

f(b)− f(a)
b− a

= f ′(c).
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Examples where the Mean Value Theorem fails...
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Example 2: Does the function

f(x) = x
2
3

satisfy the Mean Value Theorem on [−1, 1]. Why or why not?
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Example 3

Verify the conclusion of the Mean Value Theorem for the function

f(x) = x3 + 3x2 + 3x

on the interval [−3, 1].
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Example 3

Verify the conclusion of the Mean Value Theorem for the function

f(x) = x3 + 3x2 + 3x

on the interval [−3, 1].
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Monotonicity of Functions on Intervals

Recall: An interval I is a set of real numbers lying between a and
b, where a and b are real numbers or ±∞ (and may/may not include
a or b, e.g., I = [0, 5), (−∞, 6), [−1, 2], etc.

Suppose that the function f is defined on an interval I , and let x1

and x2 denote points in I :

1. f is increasing on I if f(x1) < f(x2) whenever x1 < x2.

2. f is decreasing on I if f(x1) > f(x2) whenever x1 < x2.

3. f is nondecreasing on I if f(x1) ≤ f(x2) whenever x1 < x2.

4. f is nonincreasing on I if f(x1) ≥ f(x2) whenever x1 < x2.
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Testing Monotonicity via Derivatives

Theorem. Let I be an interval and let J be the open interval
consisting of I minus its endpoints (if any). Suppose that f is
continuous on I and differentiable on J . Then

1. If f ′(x) > 0 for every x ∈ J , then f is increasing on I .

2. If f ′(x) < 0 for every x ∈ J , then f is decreasing on I .

3. If f ′(x) ≥ 0 for every x ∈ J , then f is nondecreasing on I .

4. If f ′(x) ≤ 0 for every x ∈ J , then f is nonincreasing on I .
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Example 4

Find the intervals on which the function

f(x) = 3x4 − 4x3 − 12x2 + 5

is increasing and those on which it is decreasing.
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Example 4

Find the intervals on which the function

f(x) = 3x4 − 4x3 − 12x2 + 5

is increasing and those on which it is decreasing.

Answer: f is increasing on (−1, 0) ∪ (2, +∞) and decreasing on
(−∞,−1) ∪ (0, 2).
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Example 5

On what interval(s) is the function

f(x) = 2x− sin(x)

increasing or decreasing (if any)?
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Example 5

On what interval(s) is the function

f(x) = 2x− sin(x)

increasing or decreasing (if any)?

Answer: f ′(x) = 2−cos(x) > 0 always! ⇒ f is always increasing!
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The Extreme Value Theorem

Theorem. If f is continuous on a closed interval [a, b], then there
is a point c1 in the interval where f assumes its maximum value, i.e.
f(x) ≤ f(c1) for every x in [a, b], and a point c2 where f assumes
its minimum value, i.e. f(x) ≥ f(c2) for every x in [a, b].
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The Extreme Value Theorem

Theorem. If f is continuous on a closed interval [a, b], then there
is a point c1 in the interval where f assumes its maximum value, i.e.
f(x) ≤ f(c1) for every x in [a, b], and a point c2 where f assumes
its minimum value, i.e. f(x) ≥ f(c2) for every x in [a, b].

Zen: A continuous function on a closed and bounded interval [a, b]
always has extreme values (i.e., max and min) somewhere in the
interval. This is an “existence theorem” and is very hard to prove,
in generality (Math 35/54/63).
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The Extreme Value Theorem

Theorem. If f is continuous on a closed interval [a, b], then there
is a point c1 in the interval where f assumes its maximum value, i.e.
f(x) ≤ f(c1) for every x in [a, b], and a point c2 where f assumes
its minimum value, i.e. f(x) ≥ f(c2) for every x in [a, b].

Zen: A continuous function on a closed and bounded interval [a, b]
always has extreme values (i.e., max and min) somewhere in the
interval. This is an “existence theorem” and is very hard to prove,
in generality (Math 35/54/63).

Important Question: How do we FIND these extreme values?
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Finding Extreme Values with Derivatives

Theorem. If f is defined in an open interval (a, b) and achieves
a maximum (or minimum) value at a point c ∈ (a, b) where f ′(c)
exists, then f ′(c) = 0.

Zen: An extreme value (max/min) of a differentiable function in
an open interval (a, b) must occur where the graph has a horizontal
tangent line. But, just because f ′(c) = 0 does NOT mean you have
an extreme value at x = c. Moreover, on a closed interval [a, b] we
have to also check the endpoints for possible max/mins.

Def: A point x = c where f ′(c) = 0, or does not exist, is called a
critical point of the function f .
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Example 6

For the function

f(x) = 2x3 − 6x2 − 18x + 1,

let us find the points in the interval [−4, 4] where the function
assumes its maximum and minimum values.
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Example 6

For the function

f(x) = 2x3 − 6x2 − 18x + 1,

let us find the points in the interval [−4, 4] where the function
assumes its maximum and minimum values.

x f(x)
−1 11
3 53
−4 −151
4 −39
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Rolle’s Theorem (general version)

Theorem. Suppose that the function g is continuous on the closed
interval [a, b] and differentiable on the open interval (a, b). If

g(a) = g(b)

then there exists a point c in the open interval (a, b) where g′(c) = 0.
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Example 7

Show that the equation x3 + x− 1 = 0 has exactly one real root.

21



2.11: Implicit Differentiation

• Problem: Many interesting smooth curves in the plane are NOT
the graphs of functions, but we still need to find tangent lines at
various points (e.g., curved path of a robot in a factory.)

• A circle of radius 1, for example, does not pass the “vertical line
test” and hence is not the graph of a function.

• It is, however, the graph of the equation x2 + y2 − 1 = 0.
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Implicit Differentiation...

• The equation x3 − 8xy + y3 = 1 resists our most clever efforts
to explicitly solve for y as a function of x.

• We will see how to overcome this difficulty using a very important
technique called implicit differentiation.

23



Implicit Differentiation...

• The general setting for our discussion of implicitly defined
functions is an equation F (x, y) = 0, where F is an expression
containing the two variables x and y.

• An (unknown...) function y = f(x) is implicitly defined by the
equation if

F (x, f(x)) = 0

for x in some (possibly small) interval I .

• GOAL: Find the derivative dy
dx of y = f(x) without explicitly

solving the equation for y! (Is that totally cool or what!? ,)
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Implicit Differentiation...

Example 8

• The functions y =
√

1− x2 and y = −
√

1− x2 are implicitly
defined by the equation x2 + y2 = 1.

• Consider one of the functions y = f(x) defined implicitly by the
equation x2 + y2 = 1. In either case, we have that

f ′(x) = − x

f(x)
.
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Implicit Differentiation...

Example 8 (cont’d)

Given the equation x2 + y2 = 1, we think of the (unknown...)
function y = f(x) implicitly defined by the equation and
differentiate it anyway using the Chain Rule!

x2 + y2 = 1
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Implicit Differentiation...

Example 8 (cont’d)

Given the equation x2 + y2 = 1, we think of the (unknown...)
function y = f(x) implicitly defined by the equation and
differentiate it anyway using the Chain Rule!

x2 + y2 = 1
d

dx
(x2 + y2) =

d

dx
(1)
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Implicit Differentiation...

Example 8 (cont’d)

Given the equation x2 + y2 = 1, we think of the (unknown...)
function y = f(x) implicitly defined by the equation and
differentiate it anyway using the Chain Rule!

x2 + y2 = 1
d

dx
(x2 + y2) =

d

dx
(1)

2x +
d

dx
(y2) = 0
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Implicit Differentiation...

Example 8 (cont’d)

Given the equation x2 + y2 = 1, we think of the (unknown...)
function y = f(x) implicitly defined by the equation and
differentiate it anyway using the Chain Rule!

x2 + y2 = 1
d

dx
(x2 + y2) =

d

dx
(1)

2x +
d

dx
(y2) = 0

2x + 2y
dy

dx
= 0

29



Implicit Differentiation...

Example 8 (cont’d)

Given the equation x2 + y2 = 1, we think of the (unknown...)
function y = f(x) implicitly defined by the equation and
differentiate it anyway using the Chain Rule!

x2 + y2 = 1
d

dx
(x2 + y2) =

d

dx
(1)

2x +
d

dx
(y2) = 0

2x + 2y
dy

dx
= 0

=⇒ dy

dx
= −x

y
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Implicit Differentiation...

Example 9

Use implicit differentiation to find the equation of the tangent line to
the graph of the smooth curve defined implicitly by the equation

F (x, y) = xy2 + x2y − 6 = 0

at the point (1, 2).
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Implicit Differentiation...

Example 10

Use implicit differentiation to find thederivative dy/dx of any function
y = f(x) implicitly defined by the equation

cos x +
y

x
= sin y +

x

y
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Implicit Differentiation...

Example 10

Use implicit differentiation to find the derivative dy/dx of any
function y = f(x) implicitly defined by the equation

cos x +
y

x
= sin y +

x

y

Answer: dy
dx = y3+x2y+x2y2 sin(x)

x3+xy2−x2y2 cos(y)
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Example 11

Return to the equation x3− 8xy + y3 = 1 with which we begin this
section. Find the slope at the points on the curve for which x = 1.
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The Mean § Value Theorem by Brown Sharpie...

http://brownsharpie.courtneygibbons.org/?p=728
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