2.10 The Mean Value Theorem and 2.11 Implicit Differentiation

Mathematics 3
Lecture 11
Dartmouth College
January 27, 2010

Derivatives of the Trig Functions (cont'd)

Before we begin, let's practice an example problem involving trig functions...

Example 1: Find the derivative of the function

$$
y=f(x)=\sqrt{\cos \left(x^{2}-5 x+3\right)}
$$

by using Leibniz notation for the derivatives involved.

Derivatives of the Trig Functions (cont'd)

Before we begin, let's practice an example problem involving trig functions...

Example 1: Find the derivative of the function

$$
y=f(x)=\sqrt{\cos \left(x^{2}-5 x+3\right)} .
$$

by using Leibniz notation for the derivatives involved.
Answer: $\quad \frac{d y}{d x}=\frac{(5 x-2) \sin \left(x^{2}-5 x+3\right)}{2 \sqrt{\cos \left(x^{2}-5 x+3\right)}}$

The Mean Value Theorem

Theorem 1. (p.161) Suppose that f is defined and continuous on a closed interval $[a, b]$, and suppose that f^{\prime} exists on the open interval (a, b). Then there exists a point c in (a, b) such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) .
$$

Examples where the Mean Value Theorem fails...

Example 2: Does the function

$$
f(x)=x^{\frac{2}{3}}
$$

satisfy the Mean Value Theorem on $[-1,1]$. Why or why not?

Example 3

Verify the conclusion of the Mean Value Theorem for the function

$$
f(x)=x^{3}+3 x^{2}+3 x
$$

on the interval $[-3,1]$.

Example 3

Verify the conclusion of the Mean Value Theorem for the function

$$
f(x)=x^{3}+3 x^{2}+3 x
$$

on the interval $[-3,1]$.

Monotonicity of Functions on Intervals

Recall: An interval I is a set of real numbers lying between a and b, where a and b are real numbers or $\pm \infty$ (and may/may not include a or b, e.g., $I=[0,5),(-\infty, 6),[-1,2]$, etc.

Suppose that the function f is defined on an interval I, and let x_{1} and x_{2} denote points in I :

1. f is increasing on I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
2. f is decreasing on I if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
3. f is nondecreasing on I if $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
4. f is nonincreasing on I if $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.

Testing Monotonicity via Derivatives

Theorem. Let I be an interval and let J be the open interval consisting of I minus its endpoints (if any). Suppose that f is continuous on I and differentiable on J. Then

1. If $f^{\prime}(x)>0$ for every $x \in J$, then f is increasing on I.
2. If $f^{\prime}(x)<0$ for every $x \in J$, then f is decreasing on I.
3. If $f^{\prime}(x) \geq 0$ for every $x \in J$, then f is nondecreasing on I.
4. If $f^{\prime}(x) \leq 0$ for every $x \in J$, then f is nonincreasing on I.

Example 4

Find the intervals on which the function

$$
f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5
$$

is increasing and those on which it is decreasing.

Example 4

Find the intervals on which the function

$$
f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5
$$

is increasing and those on which it is decreasing.
Answer: f is increasing on $(-1,0) \cup(2,+\infty)$ and decreasing on $(-\infty,-1) \cup(0,2)$.

Example 5

On what interval(s) is the function

$$
\begin{aligned}
& \qquad f(x)=2 x-\sin (x) \\
& \text { increasing or decreasing (if any)? }
\end{aligned}
$$

Example 5

On what interval(s) is the function

$$
f(x)=2 x-\sin (x)
$$

increasing or decreasing (if any)?
Answer: $f^{\prime}(x)=2-\cos (x)>0$ always! $\Rightarrow f$ is always increasing!

The Extreme Value Theorem

Theorem. If f is continuous on a closed interval $[a, b]$, then there is a point c_{1} in the interval where f assumes its maximum value, i.e. $f(x) \leq f\left(c_{1}\right)$ for every x in $[a, b]$, and a point c_{2} where f assumes its minimum value, i.e. $f(x) \geq f\left(c_{2}\right)$ for every x in $[a, b]$.

The Extreme Value Theorem

Theorem. If f is continuous on a closed interval $[a, b]$, then there is a point c_{1} in the interval where f assumes its maximum value, i.e. $f(x) \leq f\left(c_{1}\right)$ for every x in $[a, b]$, and a point c_{2} where f assumes its minimum value, i.e. $f(x) \geq f\left(c_{2}\right)$ for every x in $[a, b]$.

Zen: A continuous function on a closed and bounded interval $[a, b]$ always has extreme values (i.e., max and \min) somewhere in the interval. This is an "existence theorem" and is very hard to prove, in generality (Math 35/54/63).

The Extreme Value Theorem

Theorem. If f is continuous on a closed interval $[a, b]$, then there is a point c_{1} in the interval where f assumes its maximum value, i.e. $f(x) \leq f\left(c_{1}\right)$ for every x in $[a, b]$, and a point c_{2} where f assumes its minimum value, i.e. $f(x) \geq f\left(c_{2}\right)$ for every x in $[a, b]$.

Zen: A continuous function on a closed and bounded interval $[a, b]$ always has extreme values (i.e., max and \min) somewhere in the interval. This is an "existence theorem" and is very hard to prove, in generality (Math 35/54/63).

Important Question: How do we FIND these extreme values?

Finding Extreme Values with Derivatives

Theorem. If f is defined in an open interval (a, b) and achieves a maximum (or minimum) value at a point $c \in(a, b)$ where $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

Zen: An extreme value ($\mathrm{max} / \mathrm{min}$) of a differentiable function in an open interval (a, b) must occur where the graph has a horizontal tangent line. But, just because $f^{\prime}(c)=0$ does NOT mean you have an extreme value at $x=c$. Moreover, on a closed interval $[a, b]$ we have to also check the endpoints for possible max/mins.

Def: A point $x=c$ where $f^{\prime}(c)=0$, or does not exist, is called a critical point of the function f.

Example 6

For the function

$$
f(x)=2 x^{3}-6 x^{2}-18 x+1
$$

let us find the points in the interval $[-4,4]$ where the function assumes its maximum and minimum values.

Example 6

For the function

$$
f(x)=2 x^{3}-6 x^{2}-18 x+1
$$

let us find the points in the interval $[-4,4]$ where the function assumes its maximum and minimum values.

x	$f(x)$
-1	11
3	53
-4	-151
4	-39

Rolle's Theorem (general version)

Theorem. Suppose that the function g is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). If

$$
g(a)=g(b)
$$

then there exists a point c in the open interval (a, b) where $g^{\prime}(c)=0$.

Example 7

Show that the equation $x^{3}+x-1=0$ has exactly one real root.

2.11: Implicit Differentiation

- Problem: Many interesting smooth curves in the plane are NOT the graphs of functions, but we still need to find tangent lines at various points (e.g., curved path of a robot in a factory.)
- A circle of radius 1 , for example, does not pass the "vertical line test" and hence is not the graph of a function.
- It is, however, the graph of the equation $x^{2}+y^{2}-1=0$.

- The equation $x^{3}-8 x y+y^{3}=1$ resists our most clever efforts to explicitly solve for y as a function of x.
- We will see how to overcome this difficulty using a very important technique called implicit differentiation.

- The general setting for our discussion of implicitly defined functions is an equation $F(x, y)=0$, where F is an expression containing the two variables x and y.
- An (unknown...) function $y=f(x)$ is implicitly defined by the equation if

$$
F(x, f(x))=0
$$

for x in some (possibly small) interval I.

- GOAL: Find the derivative $\frac{d y}{d x}$ of $y=f(x)$ without explicitly solving the equation for y ! (Is that totally cool or what!? ©)

Example 8

- The functions $y=\sqrt{1-x^{2}}$ and $y=-\sqrt{1-x^{2}}$ are implicitly defined by the equation $x^{2}+y^{2}=1$.
- Consider one of the functions $y=f(x)$ defined implicitly by the equation $x^{2}+y^{2}=1$. In either case, we have that

$$
f^{\prime}(x)=-\frac{x}{f(x)}
$$

Example 8 (cont'd)

Given the equation $x^{2}+y^{2}=1$, we think of the (unknown...) function $y=f(x)$ implicitly defined by the equation and differentiate it anyway using the Chain Rule!

$$
x^{2}+y^{2}=1
$$

Example 8 (cont'd)

Given the equation $x^{2}+y^{2}=1$, we think of the (unknown...) function $y=f(x)$ implicitly defined by the equation and differentiate it anyway using the Chain Rule!

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
\frac{d}{d x}\left(x^{2}+y^{2}\right) & =\frac{d}{d x}(1)
\end{aligned}
$$

Example 8 (cont'd)

Given the equation $x^{2}+y^{2}=1$, we think of the (unknown...) function $y=f(x)$ implicitly defined by the equation and differentiate it anyway using the Chain Rule!

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
\frac{d}{d x}\left(x^{2}+y^{2}\right) & =\frac{d}{d x}(1) \\
2 x+\frac{d}{d x}\left(y^{2}\right) & =0
\end{aligned}
$$

Example 8 (cont'd)

Given the equation $x^{2}+y^{2}=1$, we think of the (unknown...) function $y=f(x)$ implicitly defined by the equation and differentiate it anyway using the Chain Rule!

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
\frac{d}{d x}\left(x^{2}+y^{2}\right) & =\frac{d}{d x}(1) \\
2 x+\frac{d}{d x}\left(y^{2}\right) & =0 \\
2 x+2 y \frac{d y}{d x} & =0
\end{aligned}
$$

Example 8 (cont'd)

Given the equation $x^{2}+y^{2}=1$, we think of the (unknown...) function $y=f(x)$ implicitly defined by the equation and differentiate it anyway using the Chain Rule!

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
\frac{d}{d x}\left(x^{2}+y^{2}\right) & =\frac{d}{d x}(1) \\
2 x+\frac{d}{d x}\left(y^{2}\right) & =0 \\
2 x+2 y \frac{d y}{d x} & =0 \\
\Longrightarrow \frac{d y}{d x} & =-\frac{x}{y}
\end{aligned}
$$

Example 9

Use implicit differentiation to find the equation of the tangent line to the graph of the smooth curve defined implicitly by the equation

$$
F(x, y)=x y^{2}+x^{2} y-6=0
$$

at the point $(1,2)$.

Example 10

Use implicit differentiation to find thederivative $d y / d x$ of any function $y=f(x)$ implicitly defined by the equation

$$
\cos x+\frac{y}{x}=\sin y+\frac{x}{y}
$$

Example 10

Use implicit differentiation to find the derivative $d y / d x$ of any function $y=f(x)$ implicitly defined by the equation

$$
\cos x+\frac{y}{x}=\sin y+\frac{x}{y}
$$

Answer: $\frac{d y}{d x}=\frac{y^{3}+x^{2} y+x^{2} y^{2} \sin (x)}{x^{3}+x y^{2}-x^{2} y^{2} \cos (y)}$

Example 11

Return to the equation $x^{3}-8 x y+y^{3}=1$ with which we begin this section. Find the slope at the points on the curve for which $x=1$.

The Mean \otimes Value Theorem by Brown Sharpie...

http://brownsharpie.courtneygibbons.org/?p=728

