## Challenge Example From Lecture

Recall that the object was to describe the set

$$
B=\{z=x+i y:|z-1|+|z+1|=4\} .
$$

First some observations. Throughout, let $z=x+i y$. Then

$$
z+\bar{z}=2 \operatorname{Re}(z)=2 x
$$

Also

$$
\begin{equation*}
|z+1|^{2}=(z+1)(\bar{z}+1)=|z|^{2}+z+\bar{z}+1=|z|^{2}+2 x+1 . \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
|z-1|^{2}=|z|^{2}-2 x+1 \tag{2}
\end{equation*}
$$

Now if $z \in B$, then

$$
|z+1|=4-|z-1| .
$$

Therefore

$$
|z+1|^{2}=16-8|z-1|+|z-1|^{2}
$$

Now using (1) and (2), and canceling, we have

$$
2 x=16-8|z-1|-2 x \quad \text { or } \quad 4 x=16-8|z-1| \quad \text { or } \quad x=4-2|z-1| .
$$

Thus

$$
2|z-1|=4-x \quad \text { or } \quad 4|z-1|^{2}=16-8 x+x^{2}
$$

Using (2) again,

$$
4\left(x^{2}+y^{2}-2 x+1\right)=16-8 x+x^{2} .
$$

Simplifying gives

$$
3 x^{2}+4 y^{2}=12
$$

Now divide both sides by 12 to get that $B$ is the locus of

$$
\frac{x^{2}}{4}+\frac{y^{2}}{3}=1
$$

as claimed in lecture.

