Math 43: Spring 2020 Lecture 1 Part 2

Dana P. Williams
Dartmouth College

March 30, 2020

Complex Numbers

It is time we gave a formal definition of what we mean by a complex number.

Definition

We let \mathbf{C} be the set $\mathbf{R}^{2}=\{(x, y): x, y \in \mathbf{R}\}$ together with the operations of addition given by

$$
(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)
$$

and multiplication given by

$$
(x, y)\left(x^{\prime}, y^{\prime}\right)=\left(x x^{\prime}-y y^{\prime}, x y^{\prime}+x^{\prime} y\right)
$$

We call \mathbf{C} the set of complex numbers.

Say What?

Remark

The first thing to observe, is that the set of real numbers, \mathbf{R}, sits inside \mathbf{C} in a natural way: $x \in \mathbf{R} \mapsto(x, 0) \in \mathbf{C}$. Furthermore $x+y \mapsto(x, 0)+(y, 0)$ while $x y \mapsto(x, 0)(y, 0)$.

One other cool thing is that

$$
(0,1)(0,1)=(0,1)^{2}=(-1,0)
$$

Therefore if we define $i=(0,1)$, then we've found a square root of -1 ; that is, $i^{2}=-1$. Futhermore, if we identify $x \in \mathbf{R}$ with $(x, 0)$ in \mathbf{C}, then

$$
(x, y)=(x, 0)+(0, y)=(x, 0)+(0,1)(y, 0) "=" x+i y
$$

Demystifying Multiplication and Addition

Remark

In view of the previous slide, we will almost always write $(x, y) \in \mathbf{C}$ as the sum $x+i y$. But when push comes to shove, you best remember $x+i y$ is just a short hand for the ordered pair (x, y). One advantage of this notation-besides the fact that that is the notation you know from high school-is that it explains the formulas for addition and multiplication in the definition of \mathbf{C}.

$$
\begin{aligned}
(x+i y)+\left(x^{\prime}+i y^{\prime}\right) & =x+x^{\prime}+i\left(y+y^{\prime}\right) \quad \text { and } \\
(x+i y)\left(x^{\prime}+i y^{\prime}\right) & =x x^{\prime}+x\left(i y^{\prime}\right)+i y\left(x^{\prime}\right)+i y\left(i y^{\prime}\right) \\
& =x x^{\prime}-y y^{\prime}+i\left(x y^{\prime}+x^{\prime} y\right)
\end{aligned}
$$

C is a Field

Theorem

The complex numbers \mathbf{C} form a field with zero element $0=(0,0)=0+i 0$ and multiplicative identity $1=(1,0)=1+i 0$.

Proof.

This can be proved by boring calculations using the fact that \mathbf{R} is a field. The one tricky bit is the existence of multiplicative inverses. That is we have to verify the axiom that says given $a+i b \neq 0$, then there is an element $(a+i b)^{-1}=x+i y$ such that
$1=(a+i b)(x+i y)=(a x-b y)+i(a y+b x)$. Thus we need to solve

$$
\binom{1}{0}=\binom{a x-b y}{b x+a y}=\left(\begin{array}{rr}
a & -b \\
b & a
\end{array}\right)\binom{x}{y}
$$

for x and y. You can check that the solution is $x=\frac{a}{a^{2}+b^{2}}$ and $y=\frac{-b}{a^{2}+b^{2}}$. Thus

$$
(a+i b)^{-1}=\frac{a}{a^{2}+b^{2}}+i \frac{-b}{a^{2}+b^{2}}
$$

Basics

Theorem (Homework)

The complex numbers can not be ordered. That is, unlike \mathbf{Q} and \mathbf{R}, the set \mathbf{C} of complex numbers is not an ordered field.

Definition

If $z=x+i y \in \mathbf{C}$, then we define the real part of z to be $\operatorname{Re}(z)=x$ and the imaginary part of z to be $\operatorname{Im}(z)=y$. The complex conjugate of z is $\bar{z}=x-i y$.

Remark

It is worth pointing out that both $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ are real numbers. Do not make the mistake of thinking that $\operatorname{Im}(x+i y)$ should be iy.

Geometry

We
must always keep in mind that \mathbf{C} has (no pun intended) a complex geometry coming from \mathbf{R}^{2}.
Thus we can think of $z=a+i b$ as the vector $\langle a, b\rangle$ in \mathbf{R}^{2}.
If $z=a+i b \in \mathbf{C}$, then we define the modulus of z to be $|z|=\sqrt{a^{2}+b^{2}}$. Note that in the vector picture, $|z|$ is just the length $\|\langle a, b\rangle\|$ of the vector $\langle a, b\rangle$. This is a critical
 observation for drawing pictures.

Playing with the Complex Conjugate

One special property of the complex conjugate it the following: suppose $z=a+i b$. Then

$$
z \bar{z}=(a+i b)(a-i b)=a^{2}-i a b+i a b+b^{2}=a^{2}+b^{2}=|z|^{2}
$$

The following other identities are proved similarly.

Lemma

Let $z, w \in \mathbf{C}$.
(1) $z \bar{z}=|z|^{2}$.
(2) $\overline{z^{-1}}=\bar{z}^{-1}$.
(3) $\overline{z w}=\bar{z} \bar{w}$.
(1) $\overline{z / w}=\bar{z} / \bar{w}$. (Hint: $z / w:=z w^{-1}!$)
(5) $\overline{\bar{z}}=z$.
(6) $\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}$

Comment on Division

Remark

The last formula on the previous slide deserves our attention:

$$
\frac{1}{z}=\frac{1}{z} \cdot \frac{\bar{z}}{\bar{z}}=\frac{\bar{z}}{|z|^{2}} .
$$

As is often the case with mathematical proofs, they show us how to do things in the future. Consider

$$
\begin{aligned}
\frac{1+i}{3-2 i} & =\frac{1+i}{3-2 i}\left(\frac{3+2 i}{3+2 i}\right)=\frac{(1+i)(3+2 i)}{3^{2}+2^{2}} \\
& =\frac{3-2+5 i}{13}=\frac{1}{13}+i \frac{5}{13}
\end{aligned}
$$

Don't Forget the Geometry!

Example

Describe the set $A=\{z \in \mathbf{C}:|z-1+i|=2\}$.

Solution.

Remember $|z-w|$ is the length of the corresponding vector! Hence A is the set of points z whose distance to $1-i$ is 2 . Thus A is the circle in the plane of radius 2 centered at $1-i$ or $(1,-1)$ if you prefer. Alternatively, note that
$A=\left\{z=x+i y: \sqrt{(x-1)^{2}+(y+1)^{2}}=2\right\}$.

A Challenge

Example

Describe the set $B=\{z \in \mathbf{C}:|z-1|+|z+1|=4\}$.
On the one hand, B is the set of points z such that the sum of the distance from z to 1 and from z to -1 is 4 . If you had a good high school geometry class, you know that this is an ellipse with foci 1 and -1 .
With
a lot more algebra, you can use $z \bar{z}=|z|^{2}$ and complex arithmetic to verify that

$$
B=\left\{z=x+i y: \frac{x^{2}}{4}+\frac{y^{2}}{3}=1\right\}
$$

I leave checking that last equation as a challenge.

