Math 43: Spring 2020 Lecture 10 Summary

Dana P. Williams

Dartmouth College

Monday April 20, 2020

A contour Γ in **C** consists either of a single point z_0 , or a finite sequence $\gamma_1, \ldots, \gamma_n$ of directed smooth curves such that the terminal point of γ_k is the starting point of γ_{k+1} for $1 \le k < n$. In the case Γ is not a single point, we write $\Gamma = \gamma_1 + \cdots + \gamma_n$.

Definition

An admissible parameterization of a contour $\Gamma = \gamma_1 + \cdots + \gamma_n$ is obtained by concatinating admissible pasteurization's of the γ_k . Thus given a partition $a = \tau_0 < \tau_1 < \cdots < \tau_n = b$ of [a, b], then we require admissible parameterizations $z_k : [\tau_{k-1}, \tau_k] \rightarrow \mathbf{C}$ of γ_k . Then we obtain an admissible parameterization $z : [a, b] \rightarrow \mathbf{C}$ for Γ by letting $z(t) = z_k(t)$ if $t \in [\tau_{k-1}, \tau_k]$. If Γ is a single point, then we allow a constant function as an admissible parameterization.

Examples

(a) $\Gamma = \gamma_1 + \gamma_2$

(b) $\Gamma = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$

Figure: $\Gamma = \gamma_1 + \gamma_2 + \cdots + \gamma_8$ with $\gamma_7 = -\gamma_2$ and $\gamma_5 = -\gamma_4$

A Contour $\Gamma = \gamma_1 + \cdots + \gamma_n$ is closed if the terminal point of γ_n is the initial point of γ_1 . We will sometimes use the term loop to speak of a closed contour. We call a closed contour simple if it intersects itself only at its endpoints.

Remark

If $z : [a, b] \to \mathbf{C}$ is an admissible parameterization of a contour Γ , then Γ is simple closed contour if and only if z is one-to-one on [a, b) and z(a) = z(b). Note that closed smooth curve is a simple closed contour.

Theorem (The Jordan Curve Theorem)

A simple closed contour Γ separates the plane into two domains each having Γ as their boundary. One of these domains is bounded and is called the interior of Γ . the other is called the exterior of Γ .

Remark

We will accept the Jordan Curve Theorem as "clearly true". However, it is not very easy to give a proof. Perhaps the first observation to be made is that it even needs a proof. As it turns out, Jordan Curves—that is simple closed paths—can be complex beyond belief. As we saw by example in lecture, even Jordan contours can be pretty complex.

We say that a simple closed contour is **positively oriented** if the interior is on your left as you transverse the curve.

Example

The usual parametrization $z(t) = z_0 + re^{it}$ with $t \in [0, 2\pi]$ is a positively oriented circle of radius r centered at z_0 .

If γ is a smooth curve with admissible parameterization $z : [a, b] \rightarrow \mathbf{C}$ given by z(t) = x(t) + iy(t), then the length of γ is given by

$$\ell(\gamma) = \int_{a}^{b} |z'(t)| \, dt = \int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2} \, dt.$$

If $\Gamma = \gamma_1 + \cdots + \gamma_n$, then $\ell(\Gamma) = \sum_{k=1}^n \ell(\gamma_k)$.

Remark

We know from multivariable calculus that $\ell(\gamma)$, and hence $\ell(\Gamma)$, is independent of admissible parameterization.

Remark

The approach in the text to integrals of complex-valued functions of a real variable is, to my mind, unnecessarily complicated. We will take a simplified approach.

Definition

If z(t) = u(t) + iv(t) and $z : [a, b] \to \mathbb{C}$ is continuous, then we define

$$\int_a^b z(t) dt = \int_a^b u(t) dt + i \int_a^b v(t) dt.$$

Lemma

Suppose that z(t) = u(t) + iv(t) is continuous on [a, b] and that $F : [a, b] \rightarrow \mathbb{C}$ is such that F'(t) = z(t). Then

$$\int_a^b z(t) dt = F(t) \Big|_a^b = F(b) - F(a).$$

Example

$$\int_{0}^{\frac{\pi}{2}} e^{2it} dt = \frac{e^{2it}}{2i} \Big|_{0}^{\frac{\pi}{2}} = \frac{1}{2i} (e^{i\pi} - e^{0}) = \frac{-1}{i} = i$$

Let γ be a directed smooth curve with admissible parameterization $z : [a, b] \rightarrow \mathbf{C}$. If f is a complex-valued function which is continuous on γ , then we define the contour integral of f over γ to be

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt.$$

Theorem

Let C_r be the positively oriented circle of radius r centered at z_0 . If $n \in \mathbf{Z}$, then

$$\int_{C_r} (z-z_0)^n dz = \begin{cases} 2\pi i & \text{if } n = -1, \text{ and} \\ 0 & \text{if } n \neq -1. \end{cases}$$

Extending to Arbitrary Contours

Definition

Let Γ be a contour. Suppose f is continuous on Γ . If $\Gamma = \gamma_1 + \cdots + \gamma_n$, then we define the contour integral of f over Γ to be

$$\int_{\Gamma} f(z) dz = \sum_{k=1}^n \int_{\gamma_k} f(z) dz.$$

If Γ consists of a single point, then we define the contour integral to be zero.

Remark

If Γ is the single point z_0 , we will consider the constant function $z(t) = z_0$ for all $t \in [a, b]$ to be an admissible parameterization of Γ . Then

$$\int_{\Gamma} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt = 0$$

since $z'(t) \equiv 0$.