Math 43: Spring 2020 Lecture 10 Part 2

Dana P. Williams

Dartmouth College

Monday April 20, 2020

Ordinary Inegrals

Remark

There is no real two-dimensional analogue for complex integration. After all, we showed on homework that not all analytic functions have antiderivatives—we showed there is no antiderivative of $f(z)=\frac{1}{z}$ in the punctured complex plane (§3.3, #14). As a result, we work only with complex valued functions of a real variable. The approach in the text is to my mind, unnecessarily complicated. We will take a simplified approach.

Definition

If z(t) = u(t) + iv(t) and $z : [a, b] \rightarrow \mathbf{C}$ is continuous, then we define

$$\int_a^b z(t) dt = \int_a^b u(t) dt + i \int_a^b v(t) dt.$$

The Fundamental Theorem is still Fundamental

Lemma

Suppose that z(t) = u(t) + iv(t) is continuous on [a, b] and that $F : [a, b] \to \mathbf{C}$ is such that F'(t) = z(t). Then

$$\int_{a}^{b} z(t) dt = F(t) \Big|_{a}^{b} = F(b) - F(a).$$

Proof.

Let F(t) = U(t) + iV(t). Then by assumption U'(t) = u(t) and V'(t) = v(t). Then by the usual Fundamental Theorem of Calculus,

$$\int_{a}^{b} z(t) dt = \int_{a}^{b} u(t) dt + i \int_{a}^{b} v(t) dt$$
$$= U(t) \Big|_{a}^{b} + iV(t) \Big|_{a}^{b} = F(t) \Big|_{a}^{b}$$
$$= F(b) - F(a).$$

Basic Example

Lemma

Suppose that $a \in \mathbf{R}$ and $w(t) = e^{iat}$. Then $w'(t) = aie^{iat}$.

Proof.

We have
$$w(t) = \cos(at) + i\sin(at)$$
. Hence $w'(t) = -a\sin(at) + ia\cos(at) = ia(i\sin(at) + \cos(at)) = iaw(t)$.

Example

$$\int_0^{\frac{\pi}{2}} e^{2it} dt = \frac{e^{2it}}{2i} \Big|_0^{\frac{\pi}{2}} = \frac{1}{2i} (e^{i\pi} - e^0) = \frac{-1}{i} = i.$$

A Little Calculus From Back in the Day

Lemma

Suppose that $z:[a,b] \to \mathbf{C}$ and $\varphi:[c,d] \to [a,b]$ is are differentiable. Let $w(s) = z(\varphi(s))$. Then $w'(s) = z'(\varphi(s))\varphi'(s)$.

Proof.

Let
$$z(t) = x(t) + iy(t)$$
. Then $w(s) = x(\varphi(s)) + iy(\varphi(s))$. Hence $w'(s) = x'(\varphi(s))\varphi'(s) + iy'(\varphi(s))\varphi'(s)$. Since $\varphi'(s)$ is real, $w'(s) = z'(\varphi(s))\varphi'(s)$.

Lemma

Let γ be a directed smooth curve. Suppose that $z:[a,b]\to \mathbf{C}$ and $w:[c,d]\to \mathbf{C}$ are both admissible parameterizations of γ . If f is a continuous complex-valued function on γ , then

$$\int_a^b f(z(t))z'(t) dt = \int_c^d f(w(t))w'(t) dt.$$

The Proof

Proof.

For simplicity, assume γ is a directed smooth arc. Then z and w are both one-to-one and onto with z(a)=w(c) and z(b)=w(d). Then we can define $\varphi:[c,d]\to[a,b]$ by $\varphi(s)=z^{-1}(w(s))$. Some not so trivial calculus implies that φ is differentiable. Since $w(s)=z(\varphi(s))$, we have $w'(s)=z'(\varphi(s))\varphi'(s)$ and

$$\int_{c}^{d} f(w(s))w'(s) ds = \int_{c}^{d} f(z(\varphi(s)))z'(\varphi(s))\varphi'(s) ds$$

which, after t=arphi(s) and $dt=arphi'(s)\,ds$, is

$$= \int_{\varphi(c)}^{\varphi(d)} f(z(t))z'(t) dt$$
$$= \int_{0}^{b} f(z(t))z'(t) dt.$$

Contour Integrals

Definition

Let γ be a directed smooth curve with admissible parameterization $z:[a,b]\to \mathbf{C}$. If f is a complex-valued function which is continuous on γ , then we define the contour integral of f over γ to be

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt.$$

Remark

- **1** The whole point of the previous technical foray into calculus is that the definition of $\int_{\gamma} f(z) dz$ is independent of the admissible parameterization choosen!
- The text avoids this by making the definition a theorem. But I have choosen what I hope is a simpler approach.

A Fundamental Example

Theorem (

Let C_r be the positively oriented circle of radius r centered at z_0 . If $n \in \mathbf{Z}$, then

$$\int_{C_r} (z - z_0)^n dz = \begin{cases} 2\pi i & \text{if } n = -1, \text{ and} \\ 0 & \text{if } n \neq -1. \end{cases}$$

Here $f(z) = (z - z_0)^n$.

The Proof

Proof.

We can parameterize C_r by $z(t)=z_0+re^{it}$ for $t\in[0,2\pi]$. Then by definition

$$\int_{C_r} f(z) dz = \int_0^{2\pi} f(z(t))z'(t) dt$$

$$= \int_0^{2\pi} (z(t) - z_0)^n z'(t) dt$$

$$= \int_0^{2\pi} (re^{it})^n rie^{it} dt$$

$$= ir^{n+1} \int_0^{2\pi} e^{i(n+1)} dt$$

Proof Continued

Proof Continued.

If $n \neq -1$, then

$$ir^{n+1}\int_0^{2\pi} e^{i(n+1)t} dt = ir^{n+1} \Big(\frac{e^{i(n+1)t}}{i(n+1)}\Big)\Big|_0^{2\pi} = \frac{r^{n+1}}{n+1}(1-1) = 0.$$

But if n = -1, then

$$ir^{n+1}\int_0^{2\pi}e^{i(n+1)}dt=i\int_0^{2\pi}1dt=2\pi i.$$

Extending to Arbitrary Contours

Definition

Let Γ be a contour. Suppose f is continuous on Γ . If $\Gamma = \gamma_1 + \cdots + \gamma_n$, then we define the contour integral of f over Γ to be

$$\int_{\Gamma} f(z) dz = \sum_{k=1}^{n} \int_{\gamma_{k}} f(z) dz.$$

If Γ consists of a single point, then we define the contour integral to be zero.

Remark

If Γ is the single point z_0 , we will consider the constant function $z(t)=z_0$ for all $t\in [a,b]$ to be an admissible parameterization of Γ . Then

$$\int_{\Gamma} f(z) dz = \int_{a}^{b} f(z(t))z'(t) dt = 0$$

since $z'(t) \equiv 0$.

An Example

 $I = \frac{16}{2} + 16$.

Let
$$\Gamma = [-2,2] + C_2^+$$
 where C_2^+ is the top half of the circle $|z| = 2$ from 2 to -2 . We want to evaluate $I := \int_{\Gamma} (\overline{z})^2 dz$. Fortunately, we don't have to bother parameterizing Γ ! We have $I = \int_{[-2,2]} (\overline{z})^2 dz + \int_{C_r^+} (\overline{z})^2 dz$. Figure: $\Gamma = [-1,2]$ is the forevertex $I = [-1,2]$ is the first $I =$

Figure: $\Gamma = [-2, 2] + C_2^+$

take
$$z_1(t) = t$$
 for $t \in [-2, 2]$. Then
$$\int_{[-2, 2]} (\overline{z})^2 dz = \int_{-2}^2 t^2 dt = \frac{16}{3}. \text{ For } C_2^+, \text{ we can let } z_2(t) = 2e^{it}$$
 for $t \in [0, \pi]$. Then
$$\int_{C_2^+} (\overline{z})^2 dz = \int_0^\pi (2e^{-it})^2 2ie^{it} dt = 8i \int_0^\pi e^{-it} dt = 8i \left(\frac{1}{-i}\right) e^{-it} \Big|_0^\pi = -8(e^{-i\pi} - e^0) = 16. \text{ Thus }$$

$$I = \frac{16}{3} + 16.$$

Enough

That is enough for Today.