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Ordinary Inegrals

Remark

There is no real two-dimensional analogue for complex integration.
After all, we showed on homework that not all analytic functions
have antiderivatives—we showed there is no antiderivative of
f (z) = 1

z in the punctured complex plane (§3.3, #14). As a result,
we work only with complex valued functions of a real variable. The
approach in the text is to my mind, unnecessarily complicated. We
will take a simplified approach.

Definition

If z(t) = u(t) + iv(t) and z : [a, b]→ C is continuous, then we
define ∫ b

a
z(t) dt =

∫ b

a
u(t) dt + i

∫ b

a
v(t) dt.
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The Fundamental Theorem is still Fundamental

Lemma

Suppose that z(t) = u(t) + iv(t) is continuous on [a, b] and that
F : [a, b]→ C is such that F ′(t) = z(t). Then∫ b

a
z(t) dt = F (t)

∣∣b
a

= F (b)− F (a).

Proof.

Let F (t) = U(t) + iV (t). Then by assumption U ′(t) = u(t) and
V ′(t) = v(t). Then by the usual Fundamental Theorem of
Calculus, ∫ b

a
z(t) dt =

∫ b

a
u(t) dt + i

∫ b

a
v(t) dt

= U(t)
∣∣b
a
+iV (t)

∣∣b
a
= F (t)

∣∣b
a

= F (b)− F (a).
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Basic Example

Lemma

Suppose that a ∈ R and w(t) = e iat . Then w ′(t) = aie iat .

Proof.

We have w(t) = cos(at) + i sin(at). Hence w ′(t) =
−a sin(at) + ia cos(at) = ia(i sin(at) + cos(at)) = iaw(t).

Example ∫ π
2

0
e2it dt =

e2it

2i

∣∣∣π2
0

=
1

2i
(e iπ − e0) =

−1

i
= i .
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A Little Calculus From Back in the Day

Lemma

Suppose that z : [a, b]→ C and ϕ : [c , d ]→ [a, b] is are
differentiable. Let w(s) = z(ϕ(s)). Then w ′(s) = z ′(ϕ(s))ϕ′(s).

Proof.

Let z(t) = x(t) + iy(t). Then w(s) = x(ϕ(s)) + iy(ϕ(s)). Hence
w ′(s) = x ′(ϕ(s))ϕ′(s) + iy ′(ϕ(s))ϕ′(s). Since ϕ′(s) is real,
w ′(s) = z ′(ϕ(s))ϕ′(s).

Lemma

Let γ be a directed smooth curve. Suppose that z : [a, b]→ C and
w : [c , d ]→ C are both admissible parameterizations of γ. If f is a
continuous complex-valued function on γ, then∫ b

a
f (z(t))z ′(t) dt =

∫ d

c
f (w(t))w ′(t) dt.
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The Proof

Proof.

For simplicity, assume γ is a directed smooth arc. Then z and w
are both one-to-one and onto with z(a) = w(c) and z(b) = w(d).
Then we can define ϕ : [c, d ]→ [a, b] by ϕ(s) = z−1(w(s)). Some
not so trivial calculus implies that ϕ is differentiable. Since
w(s) = z(ϕ(s)), we have w ′(s) = z ′(ϕ(s))ϕ′(s) and∫ d

c
f (w(s))w ′(s) ds =

∫ d

c
f (z(ϕ(s)))z ′(ϕ(s))ϕ′(s) ds

which, after t = ϕ(s) and dt = ϕ′(s) ds, is

=

∫ ϕ(d)

ϕ(c)
f (z(t))z ′(t) dt

=

∫ b

a
f (z(t))z ′(t) dt.
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Contour Integrals

Definition

Let γ be a directed smooth curve with admissible parameterization
z : [a, b]→ C. If f is a complex-valued function which is
continuous on γ, then we define the contour integral of f over γ to
be ∫

γ
f (z) dz =

∫ b

a
f
(
z(t)

)
z ′(t) dt.

Remark

1 The whole point of the previous technical foray into calculus is
that the definition of

∫
γ f (z) dz is independent of the

admissible parameterization choosen!

2 The text avoids this by making the definition a theorem. But I
have choosen what I hope is a simpler approach.
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A Fundamental Example

Theorem

Let Cr be the positively oriented circle of radius r centered at z0.
If n ∈ Z, then∫

Cr

(z − z0)n dz =

{
2πi if n = −1, and

0 if n 6= −1.

z0 Cr

r

Here f (z) = (z − z0)n.
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The Proof

Proof.

We can parameterize Cr by z(t) = z0 + re it for t ∈ [0, 2π]. Then
by definition ∫

Cr

f (z) dz =

∫ 2π

0
f (z(t))z ′(t) dt

=

∫ 2π

0

(
z(t)− z0

)n
z ′(t) dt

=

∫ 2π

0
(re it)nrie it dt

= irn+1

∫ 2π

0
e i(n+1) dt
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Proof Continued

Proof Continued.

If n 6= −1, then

irn+1

∫ 2π

0
e i(n+1)t dt = irn+1

( e i(n+1)t

i(n + 1)

)∣∣∣2π
0

=
rn+1

n + 1
(1− 1) = 0.

But if n = −1, then

irn+1

∫ 2π

0
e i(n+1) dt = i

∫ 2π

0
1 dt = 2πi .
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Extending to Arbitrary Contours

Definition

Let Γ be a contour. Suppose f is continuous on Γ. If Γ = γ1 + · · ·+ γn,
then we define the contour integral of f over Γ to be∫

Γ
f (z) dz =

n∑
k=1

∫
γk

f (z) dz .

If Γ consists of a single point, then we define the contour integral to be
zero.

Remark

If Γ is the single point z0, we will consider the constant function z(t) = z0

for all t ∈ [a, b] to be an admissible parameterization of Γ. Then∫
Γ
f (z) dz =

∫ b

a
f (z(t))z ′(t) dt = 0

since z ′(t) ≡ 0.
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An Example

−2 2

Figure: Γ = [−2, 2] + C+
2

Let Γ = [−2, 2] + C+
2 where C+

2

is the top half of the circle |z | = 2
from 2 to −2. We want to evaluate

I :=

∫
Γ
(z)2 dz . Fortunately, we don’t

have to bother parameterizing Γ! We

have I =

∫
[−2,2]

(z)2 dz +

∫
C+
r

(z)2 dz .

For [−2, 2] we can
take z1(t) = t for t ∈ [−2, 2]. Then∫

[−2,2]
(z)2 dz =

∫ 2

−2
t2 dt =

16

3
. For C+

2 , we can let z2(t) = 2e it

for t ∈ [0, π]. Then

∫
C+

2

(z)2 dz =

∫ π

0
(2e−it)22ie it dt =

8i

∫ π

0
e−it dt = 8i

( 1

−i

)
e−it

∣∣π
0

= −8(e−iπ − e0) = 16. Thus

I = 16
3 + 16 .
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Enough

That is enough for Today.
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