Math 43: Spring 2020 Lecture 10 Part 2

Dana P. Williams
Dartmouth College

Monday April 20, 2020

Ordinary Inegrals

Remark

There is no real two-dimensional analogue for complex integration. After all, we showed on homework that not all analytic functions have antiderivatives-we showed there is no antiderivative of $f(z)=\frac{1}{z}$ in the punctured complex plane ($\S 3.3, \# 14$). As a result, we work only with complex valued functions of a real variable. The approach in the text is to my mind, unnecessarily complicated. We will take a simplified approach.

Definition

If $z(t)=u(t)+i v(t)$ and $z:[a, b] \rightarrow \mathbf{C}$ is continuous, then we define

$$
\int_{a}^{b} z(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

The Fundamental Theorem is still Fundamental

Lemma

Suppose that $z(t)=u(t)+i v(t)$ is continuous on $[a, b]$ and that $F:[a, b] \rightarrow \mathbf{C}$ is such that $F^{\prime}(t)=z(t)$. Then

$$
\int_{a}^{b} z(t) d t=\left.F(t)\right|_{a} ^{b}=F(b)-F(a) .
$$

Proof.

Let $F(t)=U(t)+i V(t)$. Then by assumption $U^{\prime}(t)=u(t)$ and $V^{\prime}(t)=v(t)$. Then by the usual Fundamental Theorem of Calculus,

$$
\begin{aligned}
\int_{a}^{b} z(t) d t & =\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t \\
& =\left.U(t)\right|_{a} ^{b}+\left.i V(t)\right|_{a} ^{b}=\left.F(t)\right|_{a} ^{b} \\
& =F(b)-F(a) .
\end{aligned}
$$

Basic Example

Lemma

Suppose that $a \in \mathbf{R}$ and $w(t)=e^{i a t}$. Then $w^{\prime}(t)=a i e^{i a t}$.

Proof.

We have $w(t)=\cos (a t)+i \sin (a t)$. Hence $w^{\prime}(t)=$ $-a \sin (a t)+i a \cos (a t)=i a(i \sin (a t)+\cos (a t))=i a w(t)$.

Example

$$
\int_{0}^{\frac{\pi}{2}} e^{2 i t} d t=\left.\frac{e^{2 i t}}{2 i}\right|_{0} ^{\frac{\pi}{2}}=\frac{1}{2 i}\left(e^{i \pi}-e^{0}\right)=\frac{-1}{i}=i
$$

A Little Calculus From Back in the Day

Lemma

Suppose that $z:[a, b] \rightarrow \mathbf{C}$ and $\varphi:[c, d] \rightarrow[a, b]$ is are differentiable. Let $w(s)=z(\varphi(s))$. Then $w^{\prime}(s)=z^{\prime}(\varphi(s)) \varphi^{\prime}(s)$.

Proof.

Let $z(t)=x(t)+i y(t)$. Then $w(s)=x(\varphi(s))+i y(\varphi(s))$. Hence $w^{\prime}(s)=x^{\prime}(\varphi(s)) \varphi^{\prime}(s)+i y^{\prime}(\varphi(s)) \varphi^{\prime}(s)$. Since $\varphi^{\prime}(s)$ is real, $w^{\prime}(s)=z^{\prime}(\varphi(s)) \varphi^{\prime}(s)$.

Lemma

Let γ be a directed smooth curve. Suppose that $z:[a, b] \rightarrow \mathbf{C}$ and $w:[c, d] \rightarrow \mathbf{C}$ are both admissible parameterizations of γ. If f is a continuous complex-valued function on γ, then

$$
\int_{a}^{b} f(z(t)) z^{\prime}(t) d t=\int_{c}^{d} f(w(t)) w^{\prime}(t) d t
$$

The Proof

Proof.

For simplicity, assume γ is a directed smooth arc. Then z and w are both one-to-one and onto with $z(a)=w(c)$ and $z(b)=w(d)$. Then we can define $\varphi:[c, d] \rightarrow[a, b]$ by $\varphi(s)=z^{-1}(w(s))$. Some not so trivial calculus implies that φ is differentiable. Since $w(s)=z(\varphi(s))$, we have $w^{\prime}(s)=z^{\prime}(\varphi(s)) \varphi^{\prime}(s)$ and

$$
\int_{c}^{d} f(w(s)) w^{\prime}(s) d s=\int_{c}^{d} f(z(\varphi(s))) z^{\prime}(\varphi(s)) \varphi^{\prime}(s) d s
$$

which, after $t=\varphi(s)$ and $d t=\varphi^{\prime}(s) d s$, is

$$
\begin{aligned}
& =\int_{\varphi(c)}^{\varphi(d)} f(z(t)) z^{\prime}(t) d t \\
& =\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
\end{aligned}
$$

Contour Integrals

Definition

Let γ be a directed smooth curve with admissible parameterization $z:[a, b] \rightarrow \mathbf{C}$. If f is a complex-valued function which is continuous on γ, then we define the contour integral of f over γ to be

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

Remark

(1) The whole point of the previous technical foray into calculus is that the definition of $\int_{\gamma} f(z) d z$ is independent of the admissible parameterization choosen!
(2) The text avoids this by making the definition a theorem. But I have choosen what I hope is a simpler approach.

A Fundamental Example

Theorem

Let C_{r} be the positively oriented circle of radius r centered at z_{0}. If $n \in \mathbf{Z}$, then

$$
\int_{C_{r}}\left(z-z_{0}\right)^{n} d z= \begin{cases}2 \pi i & \text { if } n=-1, \text { and } \\ 0 & \text { if } n \neq-1\end{cases}
$$

Here $f(z)=\left(z-z_{0}\right)^{n}$.

Proof.

We can parameterize C_{r} by $z(t)=z_{0}+r e^{i t}$ for $t \in[0,2 \pi]$. Then by definition

$$
\begin{aligned}
\int_{C_{r}} f(z) d z & =\int_{0}^{2 \pi} f(z(t)) z^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}\left(z(t)-z_{0}\right)^{n} z^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}\left(r e^{i t}\right)^{n} r i e^{i t} d t \\
& =i r^{n+1} \int_{0}^{2 \pi} e^{i(n+1)} d t
\end{aligned}
$$

Proof Continued

Proof Continued.

If $n \neq-1$, then

$$
i r^{n+1} \int_{0}^{2 \pi} e^{i(n+1) t} d t=\left.i r^{n+1}\left(\frac{e^{i(n+1) t}}{i(n+1)}\right)\right|_{0} ^{2 \pi}=\frac{r^{n+1}}{n+1}(1-1)=0
$$

But if $n=-1$, then

$$
i r^{n+1} \int_{0}^{2 \pi} e^{i(n+1)} d t=i \int_{0}^{2 \pi} 1 d t=2 \pi i
$$

Extending to Arbitrary Contours

Definition

Let Γ be a contour. Suppose f is continuous on Γ. If $\Gamma=\gamma_{1}+\cdots+\gamma_{n}$, then we define the contour integral of f over Γ to be

$$
\int_{\Gamma} f(z) d z=\sum_{k=1}^{n} \int_{\gamma_{k}} f(z) d z
$$

If Γ consists of a single point, then we define the contour integral to be zero.

Remark

If Γ is the single point z_{0}, we will consider the constant function $z(t)=z_{0}$ for all $t \in[a, b]$ to be an admissible parameterization of Γ. Then

$$
\int_{\Gamma} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t=0
$$

since $z^{\prime}(t) \equiv 0$.

An Example

Let $\Gamma=[-2,2]+C_{2}^{+}$where C_{2}^{+}
is the top half of the circle $|z|=2$
from 2 to -2 . We want to evaluate
$I:=\int_{\Gamma}(\bar{z})^{2} d z$. Fortunately, we don't
have to bother parameterizing Γ ! We
have $I=\int_{[-2,2]}(\bar{z})^{2} d z+\int_{C_{r}^{+}}(\bar{z})^{2} d z$.

Figure: $\Gamma=[-2,2]+C_{2}^{+}$

For $[-2,2]$ we can take $z_{1}(t)=t$ for $t \in[-2,2]$. Then
$\int_{[-2,2]}(\bar{z})^{2} d z=\int_{-2}^{2} t^{2} d t=\frac{16}{3}$. For C_{2}^{+}, we can let $z_{2}(t)=2 e^{i t}$
for $t \in[0, \pi]$. Then $\int_{C_{2}^{+}}(\bar{z})^{2} d z=\int_{0}^{\pi}\left(2 e^{-i t}\right)^{2} 2 i e^{i t} d t=$
$8 i \int_{0}^{\pi} e^{-i t} d t=\left.8 i\left(\frac{1}{-i}\right) e^{-i t}\right|_{0} ^{\pi}=-8\left(e^{-i \pi}-e^{0}\right)=16$. Thus
$I=\frac{16}{3}+16$.

Enough

That is enough for Today.

