Math 43: Spring 2020 Lecture 11 Summary

Dana P. Williams

Dartmouth College

Wednesday April 22, 2020

Lemma

Suppose that $w : [a, b] \rightarrow \mathbf{C}$ is continuous.

1 If
$$\alpha \in \mathbf{C}$$
, then $\alpha \int_{a}^{b} w(t) dt = \int_{a}^{b} \alpha w(t) dt$.
2 $\left| \int_{a}^{b} w(t) dt \right| \leq \int_{a}^{b} |w(t)| dt$.

Standard Properties

Theorem

Suppose that f and g are continuous on a contour Γ .

•
$$\int_{\Gamma} (f(z) + g(z)) dz = \int_{\Gamma} f(z) dz + \int_{\Gamma} g(z) dz$$

• If $\alpha \in \mathbf{C}$, then $\alpha \int_{\Gamma} f(z) dz = \int_{\Gamma} \alpha f(z) dz$.

• If
$$-\Gamma$$
 is the opposite contour, then

$$\int_{-\Gamma} f(z) dz = -\int_{\Gamma} f(z) dz.$$

• If $|f(z)| \leq M$ for all $z \in \Gamma$, then

$$\left|\int_{\Gamma}f(z)\,dz\right|\leq M\ell(\Gamma).$$

Example

Let C_2 be the positively oriented circle |z| = 2. Show that

$$\left|\int_{C_2} \frac{\cos(z)}{z^3 + 1} \, dz\right| \le \frac{4}{7} e^2 \pi$$

Theorem (Fundamental Theorem for Contour Integrals)

Suppose that f is continuous on a domain D and that F is an antiderivative for f in D. (That is, F'(z) = f(z) for all $z \in D$.) If Γ is a contour in D from w_1 to w_2 , then

$$\int_{\Gamma} f(z) dz = F(w_2) - F(w_1).$$

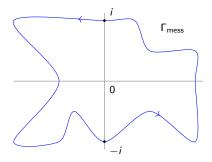
Some Fun

Consider the complicated contour Γ_{mess} drawn at right. Then

$$\int_{\Gamma_{\rm mess}} e^{2z} \, dz = \frac{e^{2z}}{2} \Big|_i^i = 0.$$

Simple. But what about

$$\int_{\Gamma_{\rm mess}} \frac{1}{z} \, dz?$$



We know that there can be no antiderivative for $\frac{1}{z}$ in a domain that contains the contour Γ_{mess} ! But we can work a bit harder. We verified that by breaking up Γ_{mess} into pieces where the FTCI applies, that $\int_{\Gamma_{\text{mess}}} \frac{1}{z} dz = 2\pi i$.