Math 43: Spring 2020 Lecture 11 Part 1

Dana P. Williams

Dartmouth College

Wednesday April 22, 2020

Back to Integrals

Remark

Now we want to explore some basic properties of integrals of complex-valued functions of a real variable and especially of contour integrals. It might be wise to review the last part of the previous lecture before proceeding.

Lemma

Suppose that $w : [a, b] \rightarrow \mathbf{C}$ is continuous.

- **1** If $\alpha \in \mathbf{C}$, then $\alpha \int_a^b w(t) dt = \int_a^b \alpha w(t) dt$.
- $\left| \int_a^b w(t) \, dt \right| \leq \int_a^b \left| w(t) \right| \, dt.$

Proof of (1)

Proof.

Let
$$w(t) = u(t) + iv(t)$$
 and $\alpha = x + iy$. Then
$$\alpha \int_a^b w(t) dt = (x + iy) \left(\int_a^b u(t) dt + i \int_a^b v(t) dt \right) = x \int_a^b u(t) dt - y \int_a^b v(t) dt + i \left(y \int_a^b u(t) dt + x \int_a^b v(t) dt \right) = \int_a^b (xu(t) - yv(t)) dt + i \int_a^b (yu(t) + xv(t)) dt \right) = \int_a^b (x + iy) (u(t) + iv(t)) dt = \int_a^b \alpha w(t) dt.$$

Proof of (2)

Proof.

Let
$$\int_a^b w(t) dt = re^{i\theta}$$
. Then

$$\left| \int_{a}^{b} w(t) dt \right| = r = e^{-i\theta} \int_{a}^{b} w(t) dt = \int_{a}^{b} e^{-i\theta} w(t) dt$$

$$= \operatorname{Re} \left(\int_{a}^{b} e^{-i\theta} w(t) dt \right) = \int_{a}^{b} \operatorname{Re} \left(e^{-i\theta} w(t) \right) dt$$

$$\leq \int_{a}^{b} \left| e^{-i\theta} w(t) \right| dt$$

$$= \int_{a}^{b} \left| w(t) \right| dt$$

Standard Properties

$\mathsf{Theorem}$

Suppose that f and g are continuous on a contour Γ .

- 2 If $\alpha \in \mathbf{C}$, then $\alpha \int_{\Gamma} f(z) dz = \int_{\Gamma} \alpha f(z) dz$.
- **3** If $-\Gamma$ is the opposite contour, then $\int_{-\Gamma} f(z) dz = \int_{\Gamma} f(z) dz.$
- **1** If $|f(z)| \leq M$ for all $z \in \Gamma$, then

$$\left|\int_{\Gamma} f(z) dz\right| \leq M\ell(\Gamma).$$

Proof

Proof.

Part (1) is straightforward and (2) is also if we use part (1) of the previous lemma. For part (3), let γ be a directed smooth curve with admissible parameterization $z:[a,b]\to \mathbf{C}$. Then $-\gamma$ is parameterized by w(s)=z(-s) for $s\in [-b,-a]$. Then

$$\int_{-\gamma} f(z) dz = \int_{-b}^{-a} f(w(s))w'(s) ds$$
$$= \int_{-b}^{-a} f(z(-s))(-z'(-s)) ds$$

which, after t = -s and dt = -ds, is

$$= \int_{b}^{a} f(z(t))z'(t) dt = -\int_{a}^{b} f(z(t))z'(t) dt$$
$$= -\int_{\gamma} f(z) dz$$

Proof Continued

Proof.

Now, in general, if $\Gamma = \gamma_1 + \cdots + \gamma_n$, then $-\Gamma = -\gamma_n + \cdots + -\gamma_1$. Then

$$\int_{-\Gamma} f(z) dz = \sum_{k=1}^{n} \int_{-\gamma_k} f(z) dz$$
$$= -\sum_{k=1}^{n} \int_{\gamma_k} f(z) dz$$
$$= -\int_{\Gamma} f(z) dz.$$

This proves (3).

Proof of (4)

Proof.

We still need to establish (4). But if γ is a directed smooth curve with admissible parameterization $z:[a,b]\to \mathbf{C}$ then

$$\left| \int_{\gamma} f(z) \, dz \right| = \left| \int_{a}^{b} f(z(t)) z'(t) \, dt \right|$$

which, using the lemma, is

$$\leq \int_{a}^{b} |f(z(t))z'(t)| dt$$

$$\leq \int_{a}^{b} M|z'(t)| dt$$

$$= M\ell(\gamma).$$

Now we let $\Gamma = \gamma_1 + \cdots + \gamma_n$, etc.

An Example

Example

Let C_2 be the positively oriented circle |z| = 2. Show that

$$\left| \int_{C_2} \frac{\cos(z)}{z^3 + 1} \, dz \right| \le \frac{4}{7} e^2 \pi$$

Solution.

If z=x+iy and |z|=2, then $|\cos(z)|\leq \frac{1}{2}\big(|e^{iz}|+|e^{-iz}|\big)\big)=\frac{1}{2}(e^{-y}+e^y)\leq e^2$. (Since $|y|\leq 2!$) On the the other hand, we can use the reverse triangle inequality to say that $|z^3+1|\geq |z|^3-1=7$ on |z|=2. Thus the integrand above is bounded by $M=\frac{e^2}{7}$. Then the modulus of the integral is bounded by $M\ell(C_2)=\frac{e^2}{7}\cdot 4\pi$.

Enough

Let's Take a Break