Math 43: Spring 2020 Lecture 11 Part 2

Dana P. Williams
Dartmouth College

Wednesday April 22, 2020

Find a Better Way

Remark

The first lesson to be learned about evaluating contour integrals is that it is tedious at best and often very difficult as well. But since they are just are just good old line integrals from vector calculus, we know that there should be better ways to evaluate them. That is our first goal today.

A Lemma

Lemma

Let $z:[a, b] \rightarrow \mathbf{C}$ be an admissible parameterization of a smooth curve γ in a domain D. Suppose F is analytic in D. Let $w(t)=F(z(t))$ for $t \in[a, b]$. Then w is differentiable and $w^{\prime}(t)=F^{\prime}(z(t)) z^{\prime}(t)$.

Proof.

By definition,
$w^{\prime}(t)=\lim _{h \rightarrow 0} \frac{w(t+h)-w(t)}{h}=\lim _{h \rightarrow 0} \frac{F(z(t+h))-F(z(t))}{h}$. Since z is
one-to-one, $h \neq 0$ implies $z(t+h)-z(t) \neq 0$. Hence
$w^{\prime}(t)=\lim _{h \rightarrow 0} \frac{F(z(t+h))-F(z(t))}{z(t+h)-z(t)} \cdot \frac{z(t+h)-z(t)}{h}$. But as $h \rightarrow 0$,
$z(t+h) \rightarrow z(t)$. Thus $w^{\prime}(t)=$
$\lim _{w \rightarrow z(t)} \frac{F(w)-F(z(t))}{w-z(t)} \cdot \lim _{h \rightarrow 0} \frac{z(t+h)-z(t)}{h}=F^{\prime}(z(t)) z^{\prime}(t)$.

Fundamental Theorem for Contour Integrals

Theorem (Fundamental Theorem for Contour Integrals)

Suppose that f is continuous on a domain D and that F is an antiderivative for f in D. (That is, $F^{\prime}(z)=f(z)$ for all $z \in D$.) If Γ is a contour in D from w_{1} to w_{2}, then

$$
\int_{\Gamma} f(z) d z=F\left(w_{2}\right)-F\left(w_{1}\right)
$$

Proof.

Suppose that γ is a directed smooth curve in D with admissible parameterization $z:[a, b] \rightarrow \mathbf{C}$. Then

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =\int_{a}^{b} f(z(t)) z^{\prime}(t) d t=\int_{a}^{b} \frac{d}{d t}(F(z(t))) d t \\
& =F(z(b))-F(z(a)) .
\end{aligned}
$$

Proof Continued

Proof Continued.

Now suppose that $\Gamma=\gamma_{1}+\cdots+\gamma_{n}$ where γ_{k} is a directed smooth curve from z_{k-1} to z_{k}. Then

$$
\begin{aligned}
\int_{\Gamma} f(z) d z & =\sum_{k=1}^{n} \int_{\gamma_{k}} f(z) d z \\
& =\sum_{k=1}^{n} F\left(z_{k}\right)-F\left(z_{k-1}\right) \\
& =F\left(z_{n}\right)-F\left(z_{0}\right) \\
& =F\left(w_{2}\right)-F\left(w_{1}\right)
\end{aligned}
$$

Example

Let
$\Gamma=C_{2}^{+}+[-2,-3+i]$. Let's
compute $I=\int_{\Gamma} \cos (z) d z$.
Using the definition
would be (more than) painful!
But $\frac{d}{d z} \sin (z)=\cos (z)$. Hence

$I=\sin (-3+i)-\sin (2)$.

Consider the complicated contour $\Gamma_{\text {mess }}$ drawn at right. Then

$$
\int_{\Gamma_{\text {mess }}} e^{2 z} d z=\left.\frac{e^{2 z}}{2}\right|_{i} ^{i}=0
$$

Simple. But what about

$$
\int_{\Gamma_{\text {mess }}} \frac{1}{z} d z ?
$$

We know that there can be no antiderivative for $\frac{1}{z}$ in a domain that contains the contour $\Gamma_{\text {mess }}$! But we can work a bit harder.

Working Harder—But Not Too Hard

We can write
$\Gamma_{\text {mess }}=\Gamma_{1}+\Gamma_{2}$ where Γ_{1}
is the part of $\Gamma_{\text {mess }}$ from
$-i$ to i, and Γ_{2} is the part from i to $-i$. Then
$\int_{\Gamma_{\text {mess }}} \frac{1}{z} d z=\int_{\Gamma_{1}} \frac{1}{z} d z+\int_{\Gamma_{2}} \frac{1}{z} d z$.

But Γ_{1} sits inside the domain D^{*} where $\log (z)$ is analytic. And Γ_{2} sits inside the domain D_{0}^{*} where $\mathcal{L}_{0}(z)$ is analtyic. Hence

$$
\begin{aligned}
\int_{\Gamma_{\text {mess }}} \frac{1}{z} d z & =\left.(\log (z))\right|_{-i} ^{i}+\left.\left(\mathcal{L}_{0}(z)\right)\right|_{i} ^{-i} \\
& =\log (i)-\log (-i)+\mathcal{L}_{0}(-i)-\mathcal{L}_{0}(i) \\
& =i \frac{\pi}{2}-\left(-i \frac{\pi}{2}\right)+i \frac{3 \pi}{2}-i \frac{\pi}{2}=2 \pi i
\end{aligned}
$$

Enough

That is enough for now!

