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The Deformation Invariance Theorem

Theorem (Deformation Invariance Theorem)

Suppose that f is analytic in a domain D and that Γ0 and Γ1 are
closed contours in D such that Γ0 can be continuously deformed in
D to Γ1. Then ∫

Γ0

f (z) dz =

∫
Γ1

f (z) dz .

In particular, if Γ0 can be continuously deformed to a point in D,
then ∫

Γ0

f (z) dz = 0.
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Advertisement

Remark

The Deformation Invariance Theorem is one of the deeper results
we’ll discuss this term. Unfortunately, the proof for the result as
stated is a bit more than we want to take on in Math 43. Instead,
we will prove it with some additional assumptions. Namely,

1 f ′ is continuous on D.

2 The deformation z : [0, 1]2 → D from Γ0 to Γ1 has continuous
second partials throughout D.

3 Some more Calculus.
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The Proof of DIT

Proof.

Let Γs be the contour t 7→ z(s, t) for t ∈ [0, 1]. Define

I (s) =

∫
Γs

f (z) dz =

∫ 1

0
f (z(s, t))zt(s, t) dt. We need to prove

that I (0) = I (1). Hence it suffices to show that for all s ∈ [0, 1],

I ′(s) = 0

=
d

ds

∫ 1

0
f (z(s, t))zt(s, t) dt

which, assuming we can differentiate under the integral sign, is

=

∫ 1

0

∂

∂s

[
f (z(s, t))zt(s, t)

]
dt.
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Proof

Proof Continued.

However using the chain rule:∫ 1

0

∂

∂s

[
f (z(s, t))zt(s, t)

]
dt

=

∫ 1

0

[
f ′(z(s, t))zs(s, t)zt(s, t) + f (z(s, t))zts(s, t)

]
which, since zts = zst by Clairaut’s Theorem, is

=

∫ 1

0

∂

∂t

(
f (z(s, t))zs(s, t)

)
dt

which, by the Fundamental Theorem of Calculus, is

= f (z(s, 1))zs(s, 1)− f (z(s, 0))zs(s, 0).
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Proof

Proof Continued.

But each Γs is a closed contour, so z(s, 1) = z(s, 0). Similarly,
s 7→ z(s, 0) and s 7→ z(s, 1) are the same function. Therefore
zs(s, 0) = zs(s, 1). Therefore,

I ′(s) = f (z(s, 1))zs(s, 1)− f (z(s, 0))zs(s, 0)

= 0.

Therefore s 7→ I (s) is constant and I (0) = I (1) and we’re
done.
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Cauchy Integral Theorem

Theorem (Cauchy Integral Theorem)

Suppose that f is analytic on a simply connected domain D. Then
for every closed contour Γ in D we have∫

Γ
f (z) dz = 0.

Proof.

Suppose Γ is a closed contour in D. Since D is simply connected,
we can continuously deform Γ to a point. Hence the result follows
from the Deformation Invariance Theorem.
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Back to the Barbell

Example

Evaluate I =

∫
|z|=4

z2 − 11z + 22

(z − 2)2(z + 2)
dz . Where we assume |z | = 4

is positively oriented.

Note that f (z) :=
z2 − 11z + 22

(z − 2)2(z + 2)
=

1

(z − 2)2
− 2

z − 2
+

3

z + 2
.

We can deform |z | = 4 to a
barbell contour as before.
Since the line segments

cancel, I =

∫
|z−2|=1

f (z) dz +∫
|z+2|=1

f (z) dz .

2−2

|z| = 4

|z − 2| = 1

|z + 2| = 1
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Example Continued

We will take the integrals one at a time.∫
|z−2|=1

f (z) dz =

∫
|z−2|=1

( 1

(z − 2)2
− 2

z − 2
+

3

z + 2

)
dz

=

∫
|z−2|=1

(z − 2)−2 dz − 2

∫
|z−2|=1

(z − 2)−1 dz

+ 3

∫
|z−2|=1

(z + 2)−1 dz

= 0− 2(2πi)︸ ︷︷ ︸
Basic Circle Lemma

+ 0︸︷︷︸
Cauchy’s Integral Theorem

= −4πi .
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The Other Bit

Similarly,∫
|z+2|=1

f (z) dz =

∫
|z+2|=1

( 1

(z − 2)2
− 2

z − 2
+

3

z + 2

)
dz

= 0 + 0︸ ︷︷ ︸
Cauchy’s Integral Theorem

+6πi .

Hence I = −4πi + 6πi = 2πi .
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Enough

Remark

Next time we will look at some deeper implications of Cauchy’s
Integral Theorem and Antiderivatives.

That’s Enough for Today
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