# Math 43: Spring 2020 Lecture 14 Part I 

Dana P. Williams<br>Dartmouth College

Wednesday April 29, 2020

## Last Time

As a result of the Deformation Invariance Theorem, we were able to prove the following.

## Theorem (Cauchy Integral Theorem)

Suppose that $f$ is analytic on a simply connected domain $D$ and that $\Gamma$ is a closed contour in $D$. Then

$$
\int_{\Gamma} f(z) d z=0 .
$$

## Remark

Note the requirements:
(1) $D$ is simply connected.
(2) $f$ is analytic on $D$.
(3) $\Gamma$ is closed and contained in $D$.

## Antiderivatives

## Theorem

Suppose that $D$ is a simply connected domain. Then every analytic function $f$ on $D$ has an antiderivative on $D$.

## Proof.

Suppose $f$ is analytic on $D$. Then the Cauchy Integral Theorem implies $\int_{\Gamma} f(z) d z=0$ for every closed contour in $D$. Hence $f$ has an antiderivative by our Antiderivative Theorem.

## A Promise Kept

## Corollary

Neither the punctured plane $D^{\prime}=\mathbf{C} \backslash\{0\}$ nor the annulus $A=\{z: 1<|z|<2\}$ is simply connected.

## Proof.

$f(z)=1 / z$ is analytic in both domains, but
$\int_{|z|=\frac{3}{2}} \frac{1}{z} d z=2 \pi i \neq 0$.

## Simply Connected Domains

## Remark

Recall that the Jordan Curve Theorem says that every simple closed contour $\Gamma$ in the plane divides the plane into two domains. Furthermore, only one of these is bounded and it is called the interior of $\Gamma$.

## Theorem (The Jordan Curve Theorem Revisited)

Suppose that $\Gamma$ is a simple closed contour. (We may call such a 「 a Jordan contour.) Then the interior of $\Gamma$ is simply connected.

## Remark

The proof is beyond the scope of this course, but we will use it to provide additional examples of simply connected regions.

## Example



Figure: A Simply Connected Domain $D$

## Branches

## Corollary

Suppose that $D$ is a simply connected domain that does not contain 0 . Then there is an analytic branch of $\log (z)$ in $D$.

## Proof.

Since $0 \notin D, f(z)=\frac{1}{z}$ is analytic on $D$. Since $D$ is simply connected, $f$ has an antiderivative $g$ on $D$. That is, $g^{\prime}(z)=\frac{1}{z}$ for all $z \in D$. Now let $h(z)=\frac{e^{g(z)}}{z}$. Since $0 \notin D, h$ is analytic on $D$ and $h^{\prime}(z)=\frac{g^{\prime}(z) e^{g(z)} z-e^{g(z)}}{z^{2}}=0$ for all $z \in D$. Therefore $h$ is constant. Since $h$ is nonzero, there is a nonzero complex number $c$ such that $c e^{g(z)}=z$ for all $z \in D$. Let $d \in \log (c)$. Then $e^{d}=c$.
Now let $h(z)=g(z)+d$. Then
$e^{h(z)}=e^{d+g(z)}=e^{d} e^{g(z)}=c e^{g(z)}=z$. Thus $h$ is analytic on $D$ and $h(z) \in \log (z)$ for all $z \in D$.

## Exotic Branches

## Example

This means that there is an analytic branch of $\log (z)$ in the domain $D$ from two slides previous! Even better, if the house in the picture below sits on the origin, then there is an analytic branch of $\log (z)$ defined in the pink domain below.


## Another Corollary

## Corollary

Suppose that $u$ is harmonic in a simply connected domain D. Then $u$ has a harmonic conjugate in $D$.

## Proof.

We are asked to find $v$ such that $f(z)=u(z)+i v(z)$ is analytic on D. If such a $v$ exists, then $f^{\prime}(z)=u_{x}(z)+i v_{x}(z)=u_{x}(z)-i u_{y}(z)$. Let $g(z)=u_{x}(z)-i u_{y}(z)$. Note that

$$
g_{x}(z)=u_{x x}(z)-i u_{y x}(z)=-i\left(u_{y x}(z)-i u_{x x}(z)\right)
$$

which, by Clairaut's Theorem and since $u$ is harmonic, is

$$
=-i\left(u_{x y}(z)+i u_{y y}(z)\right)=-i g_{y}(z)
$$

Since $u$ has continuous second partials, $g$ has continuous first partials which satisfy the Cauchy-Riemann Equations. Therefore, $g$ is analytic in $D$.

## Proof Continued

## Proof.

Since $g(z)=u_{x}(z)-i u_{y}(z)$ is analytic in a simply connected domain $D, g$ has a antiderivative $h$ in $D$. Let $h(z)=\underline{u}(z)+i \underline{v}(z)$. Then $g(z)=h^{\prime}(z)=\underline{u}_{x}(z)+i \underline{v}_{x}(z)=\underline{u}_{x}(z)-i \underline{u}_{y}(z)$. Let $w:=u-\underline{u}$. Then $w_{x}=u_{x}-\underline{u}_{x} \equiv 0$ while $w_{y}=u_{y}-\underline{u}_{y} \equiv 0$.
Therefore $w$ is a constant function. Therefore $\underline{u}(z)=u(z)+c$. Then if we let $f(z)=h(z)-c$, then $f(z)=u(z)+i \underline{v}(z)$ is analytic in $D$, and $\underline{v}$ is a harmonic conjugate for $u$.

## Enough

## Time for a Break

