Math 43: Spring 2020 Lecture 16 and 17 Summary

Dana P. Williams

Dartmouth College

Wednesday May 6, 2020

- We should be recording.
- We have the midterm coming up on Wednesday.
- The midterm will cover through Monday's Lecture which will cover up to and including section 5.3 in the text.
- I've put a copy of last year's midterm on the assignment page.

Theorem (Cauchy's Estimates)

Let $D = B_R(z_0)$. Suppose that f is analytic on D and bounded by M on D; that is, that $|f(z)| \le M$ for all $z \in D$. Then for each n = 0, 1, 2, ..., we have

$$\left|f^{(n)}(z_0)\right| \leq \frac{n!M}{R^n}.$$

Theorem (Liouville's Theorem)

A bounded entire function must be a constant function.

Theorem (Fundamental Theorem of Algebra)

Suppose that p(z) is a polynomial of degree at least one, then p(z) has at least one complex root.

Theorem (Maximum Modulus Principle)

Suppose that f is analytic on a domain D. If there is a $z_0 \in D$ such that

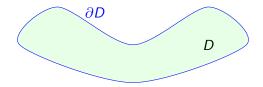
$$|f(z)| \leq |f(z_0)|$$
 for all $z \in D$,

then f is constant.

Remark

- Colloquially, a non-constant analytic function can not attain its maximum modulus on any domain.
- What the Maximum Modulus Principle does not say: note that f(z) = z is bounded by M = 1 on the domain D = B₁(0) = { z : |z| < 1 }. Of course, it is not a constant function. That is because it does not attain its maximum modulus on D.

The Extreme Value Theorem



Remark (The Extreme Value Theorem from Calculus)

If D is a bounded domain, then the closure, \overline{D} , of D is the union of D and its boundary ∂D . Then \overline{D} is closed and bounded. The the Extreme Value Theorem from multivariable calculus tells us that a continuous real-valued function f on \overline{D} must attain its maximum and minimum on \overline{D} . This means there are points $c, d \in \overline{D}$ such that $f(c) \leq f(z) \leq f(d)$ for all $z \in \overline{D}$. Since \mathbb{C} is not ordered, none of this makes any sense at all for complex-valued functions!

Theorem

Suppose that D is a bounded domain and that $f : \overline{D} \subset \mathbf{C} \to \mathbf{C}$ is a continuous function which is analytic in D. Then f attains its maximum modulus on the boundary ∂D of D. (In the text, the authors describe such a f as analytic in D and continuous up to and including the boundary.)

Remark (Minimum Modulus)

Consider f(z) = z on the domain $D = B_1(0) = \{ z : |z| < 1 \}$. Note that the minimum of |f(z)| occurs at $0 \in D$. Of course, f isn't a constant function. You will explore what can be said about a sort of "Minimum Modulus Principle" in the homework.

A series of complex numbers is an expression of the form

$$\sum_{n=0}^{\infty} c_n \tag{\dagger}$$

where each $c_n \in \mathbf{C}$. The *n*th-partial sum of (†) is $s_n := c_0 + c_1 + \cdots + c_n$. If $\lim_{n \to \infty} s_n$ exists and equals *s*, then we say that (†) converges with sum *s*. Then we write

$$s=\sum_{n=0}^{\infty}c_n$$

Otherwise, we say that (†) diverges.

If $a \neq 0$ and $c \in \mathbf{C}$, then we say that

$$\sum_{n=0}^{\infty} ac^n = a + ac + ac^2 + \cdots$$

is a geometric series with ratio c.

Theorem

If |c| < 1, then

$$\sum_{n=0}^{\infty} ac^n = \frac{a}{1-c}.$$

If $|c| \ge 1$, then the series diverges.

Reverting to Calculus II

Lemma

We have

$$\sum_{n=0}^{\infty} c_n = s$$

~

if and only if

$$\sum_{n=0}^{\infty} \operatorname{Re}(c_n) = \operatorname{Re}(s) \quad and \quad \sum_{n=0}^{\infty} \operatorname{Im}(c_n) = \operatorname{Im}(s).$$

Proposition (The Comparison Test)

Suppose that
$$|c_n| \le a_n$$
 for $n \ge N$. If $\sum_{n=0}^{\infty} a_n < \infty$, then $\sum_{n=0}^{\infty} c_n$ converges.

We say that a series $\sum_{n=0}^{\infty} c_n$ converges absolutely if $\sum_{n=0}^{\infty} |c_n| < \infty$.

Proposition (Ratio Test)

Suppose that

$$\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=L$$

exists. If L < 1, then $\sum_{n=0}^{\infty} c_n$ converges absolutely. If L > 1, then $\sum_{n=0}^{\infty} c_n$ diverges.

A sequence (F_n) of functions on a set D converges pointwise to a function F on D if $\lim_{n\to\infty} F_n(z) = F(z)$ for all $z \in D$. We say that series $\sum_{n=0}^{\infty} f_n(z)$ converges pointwise to f(z) on D if the partial sums $F_n(z) = \sum_{k=0}^n f_k(z)$ converge pointwise to f on D.

Definition

A sequence (F_n) of functions on a set D converges uniformly to a function F on D if for all $\epsilon > 0$ there is a $N = N(\epsilon)$ such that $n \ge N$ implies $|F(z) - F_n(z)| < \epsilon$ for all $z \in D$. We say that a series $\sum_{n=0}^{\infty} f_n(z)$ converges uniformly to f on D, if the partial sums $F_n(z) = \sum_{k=0}^n f_k(z)$ converge uniformly to f on D.

An Example

Example

Suppose that $z_0 \neq 0$.

- The series $\sum_{n=0}^{\infty} \left(\frac{z}{z_0}\right)^n$ converges pointwise to $F(z) = z_0/(z_0 z)$ on $D = B_{|z_0|}(0)$.
- **2** The convergence above is **not** uniform on D.
- However, the convergence is uniform on $D_r = \overline{B_r(0)}$ whenever $0 < r < |z_0|$.

