Math 43: Spring 2020 Lecture 16 Part II

Dana P. Williams

Dartmouth College

Monday May 4, 2020

Calculus Again

Example

The function $u(x,y)=2-\frac{1}{1-x^2-y^2}$ is well-defined on the unit disk $D=B_1(0)=\{\,(x,y):x^2+y^2<1\,\}$. While u is not bounded below, it does have a maximum value of 1 at the point $(0,0)\in D$. We will see now that u is not of the form u(z)=|f(z)| with f analytic in D.

Theorem (Maximum Modulus Principle)

Suppose that f is analytic on a domain D. If there is a $z_0 \in D$ such that

$$|f(z)| \le |f(z_0)|$$
 for all $z \in D$,

then f is constant.

Remark

- Colloquially, a non-constant analytic function can not attain its maximum modulus on any domain.
- The homework problem that an analytic function with constant modulus on a domain D must be constant is a special case.
- **3** What the Maximum Modulus Principle does not say: note that f(z) = z is bounded by M = 1 on the domain $D = B_1(0) = \{ z : |z| < 1 \}$. Of course, it is not a constant function. That is because it does not attain its maximum modulus on D.

Lemma A

Lemma (A)

Suppose $f:[0,2\pi]\to \mathbf{R}$ is continuous and such that $0\leq f(x)\leq M$ for all $x\in[0,2\pi]$. If

$$M=\frac{1}{2\pi}\int_0^{2\pi}f(x)\,dx,$$

then f(x) = M for all $x \in [0, 2\pi]$.

Proof.

We have

$$0 = \frac{1}{2\pi} \int_0^{2\pi} (M - f(x)) dx.$$

Since $M - f(x) \ge 0$ and $x \mapsto M - f(x)$ is continuous, we must have M - f(x) = 0 for all x.

Lemma B

Lemma (A)

Suppose that f is analytic in the disk $D = B_R(z_0)$ and that

$$|f(z)| \le |f(z_0)|$$
 for all $z \in D$.

Then f is constant.

Proof.

You showed on homework (§4.5 #8) that the Cauchy Integral Formula implies that for all 0 < r < R, we have

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

Proof Continued

Proof.

Let $M = |f(z_0)|$. Then

$$|M| = |f(z_0)| \le \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{i\theta})| d\theta \le \frac{1}{2\pi} M \cdot 2\pi = M.$$

Hence

$$M = \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{i\theta})| d\theta.$$

Therefore by Lemma A, $M = |f(z_0 + re^{i\theta})|$ for all $\theta \in [0, 2\pi]$.

Proof Continued

Figure: The modulus is constant on every intermediate circle

Proof.

Since the modulus is constantly equal to $M = |f(z_0)|$ on every circle of radius 0 < r < R, the modulus is constant in all of D. But we proved on homework that this implies f itself is constant. This proves the lemma.

Proof of the MMP

Proof of the Theorem.

Suppose that for $z_0 \in D$, we have $|f(z)| \le |f(z_0)|$ for all $z \in D$. To see that this forces f to be constant, it will suffice to see that |f(z)| is constant on D. Suppose to the contrary of what we want to prove, |f(z)| is not constant. Then there is a $z_1 \in D$ such that $|f(z_1)| < |f(z_0)|$. Since D is connected, there is a contour Γ in D from z_0 to z_1 . Let $z : [0,1] \to D$ be an admissible parameterization of Γ . Note that $z(0) = z_0$ and $z(1) = z_1$.

Proof of MMP

Let
$$A = \{ s \in [0,1] : |f(z(t))| = |f(z_0)| \text{ for all } 0 \le t \le s \}.$$

Let $t_0 = I$. u. b. A . Note that $0 \in A$ and $1 \notin A$.

Since $|f(z(t))| = |f(z_0)|$ for all $0 \le t < t_0$, we must have $t_0 \in A$ by continuity. Moreover, if $t_0 < t_1$, then there is $t_0 < t < t_1$ such that $|f(z(t))| < |f(z_0)|$. But there is a r > 0 such that $B_r(z(t_0)) \subset D$. But then for all $z \in B_r(z(t_0))$, we have $|f(z)| \le |f(z(t_0))|$. Then by Lemma B, f is constant in $B_r(z(t_0))$. This contradicts our choice of t_0 .

This completes the proof of the Maximum Modulus Principle.

The Extreme Value Theorem

Remark (The Extreme Value Theorem from Calculus)

If D is a bounded domain, then the closure, \overline{D} , of D is the union of D and its boundary ∂D . Then \overline{D} is closed and bounded. The the Extreme Value Theorem from multivariable calculus tells us that a continuous real-valued function f on \overline{D} must attain its maximum and minimum on \overline{D} . This means there are points $c,d\in \overline{D}$ such that $f(c) \leq f(z) \leq f(d)$ for all $z\in \overline{D}$. Since ${\bf C}$ is not ordered, none of this makes any sense at all for complex-valued functions!

Maximum Modulus Principle for Bounded Domains

Theorem

Suppose that D is a bounded domain and that $f:\overline{D}\subset \mathbf{C}\to \mathbf{C}$ is a continuous function which is analytic in D. Then f attains its maximum modulus on the boundary ∂D of D. (In the text, the authors describe such a f as analytic in D and continuous up to and including the boundary.)

Proof.

The real-valued function $z\mapsto |f(z)|$ must attain its maximum on \overline{D} . If this occurs on ∂D , then we have nothing to show. However, if the maximum is attained in the interior, namely in D, then the Maximum modulus principle implies that f is constant on D. Then by continuity, f is constant on \overline{D} . Therefore by default the maximum of |f(z)| must also occur on ∂D .

Minimums

Remark

Consider f(z) = z on the domain $D = B_1(0) = \{z : |z| < 1\}$. Note that the minimum of |f(z)| occurs at $0 \in D$. Of course, f isn't a constant function. You will explore what can be said about a sort of "Minimum Modulus Principle" in the homework.

Harmonic Functions

Example

Suppose that u is a harmonic function on a simply connected domain D. Suppose that there is a point $(x_0, y_0) \in D$ such that $u(x, y) \leq u(x_0, y_0)$ for all $(x, y) \in D$. In other words, assume u attains its maximum on D. Show that u must be constant.

Solution

Solution.

Let $z_0 = x_0 + iy_0$. Since D is simply connected, there is a harmonic conjugate v for u in D. Then f(z) = u(z) + iv(z) is analytic in D. Hence $g(z) = \exp(f(z))$ is analytic in D. But then since $x \mapsto e^x$ is strictly increasing on \mathbf{R} , we have

$$|g(z)| = |e^{f(z)}| = e^{u(z)} \le e^{u(z_0)}$$
 for all $z \in D$.

Therefore g is constant by the Maximum Modulus Principle. Therefore for all $z \in D$, $0 = g'(z) = f'(z)e^{f(z)}$. Since $e^{f(z)}$ never vanishes, we must have f'(z) = 0 for all $z \in D$. Thus f is constant, and hence u is constant.

Enough

That is enough for one lecture.