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Calculus Again

Example

The function u(x , y) = 2− 1

1− x2 − y2
is well-defined on the unit

disk D = B1(0) = { (x , y) : x2 + y2 < 1 }. While u is not bounded
below, it does have a maximum value of 1 at the point (0, 0) ∈ D.
We will see now that u is not of the form u(z) = |f (z)| with f
analytic in D.
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Theorem (Maximum Modulus Principle)

Suppose that f is analytic on a domain D. If there is a z0 ∈ D
such that

|f (z)| ≤ |f (z0)| for all z ∈ D,

then f is constant.

Remark

1 Colloquially, a non-constant analytic function can not attain
its maximum modulus on any domain.

2 The homework problem that an analytic function with
constant modulus on a domain D must be constant is a
special case.

3 What the Maximum Modulus Principle does not say: note
that f (z) = z is bounded by M = 1 on the domain
D = B1(0) = { z : |z | < 1 }. Of course, it is not a constant
function. That is because it does not attain its maximum
modulus on D.
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Lemma A

Lemma (A)

Suppose f : [0, 2π]→ R is continuous and such that
0 ≤ f (x) ≤ M for all x ∈ [0, 2π]. If

M =
1

2π

∫ 2π

0
f (x) dx ,

then f (x) = M for all x ∈ [0, 2π].

Proof.

We have

0 =
1

2π

∫ 2π

0

(
M − f (x)

)
dx .

Since M − f (x) ≥ 0 and x 7→ M − f (x) is continuous, we must
have M − f (x) = 0 for all x .
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Lemma B

Lemma (A)

Suppose that f is analytic in the disk D = BR(z0) and that

|f (z)| ≤ |f (z0)| for all z ∈ D.

Then f is constant.

Proof.

You showed on homework (§4.5 #8) that the Cauchy Integral
Formula implies that for all 0 < r < R, we have

f (z0) =
1

2π

∫ 2π

0
f (z0 + re iθ) dθ.
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Proof Continued

Proof.

Let M = |f (z0)|. Then

M = |f (z0)| ≤ 1

2π

∫ 2π

0
|f (z0 + re iθ)| dθ ≤ 1

2π
M · 2π = M.

Hence

M =
1

2π

∫ 2π

0
|f (z0 + re iθ)| dθ.

Therefore by Lemma A, M = |f (z0 + re iθ)| for all θ ∈ [0, 2π].
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Proof Continued

Rz0

Figure: The modulus is constant on every intermediate circle

Proof.

Since the modulus is constantly equal to M = |f (z0)| on every
circle of radius 0 < r < R, the modulus is constant in all of D.
But we proved on homework that this implies f itself is constant.
This proves the lemma.
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Proof of the MMP

Proof of the Theorem.

Suppose that for z0 ∈ D, we have |f (z)| ≤ |f (z0)| for all z ∈ D.
To see that this forces f to be constant, it will suffice to see that
|f (z)| is constant on D. Suppose to the contrary of what we want
to prove, |f (z)| is not constant. Then there is a z1 ∈ D such that
|f (z1)| < |f (z0)|. Since D is connected, there is a contour Γ in D
from z0 to z1. Let z : [0, 1]→ D be an admissible parameterization
of Γ. Note that z(0) = z0 and z(1) = z1.
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Proof of MMP

z0
z1

z(t0)
Let A = { s ∈ [0, 1] :
|f (z(t))| = |f (z0)| for all 0 ≤ t ≤ s }.
Let t0 = l. u. b.A. Note that 0 ∈ A and
1 /∈ A.

Since |f (z(t))| = |f (z0)| for all 0 ≤ t < t0, we must have t0 ∈ A
by continuity. Moreover, if t0 < t1, then there is t0 < t < t1 such
that |f (z(t))| < |f (z0)|. But there is a r > 0 such that
Br (z(t0)) ⊂ D. But then for all z ∈ Br (z(t0)), we have
|f (z)| ≤ |f (z(t0))|. Then by Lemma B, f is constant in Br (z(t0)).
This contradicts our choice of t0.

This completes the proof of the Maximum Modulus Principle.
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The Extreme Value Theorem

D

∂D

Remark (The Extreme Value Theorem from Calculus)

If D is a bounded domain, then the closure, D, of D is the union of
D and its boundary ∂D. Then D is closed and bounded. The the
Extreme Value Theorem from multivariable calculus tells us that a
continuous real-valued function f on D must attain its maximum
and minimum on D. This means there are points c , d ∈ D such
that f (c) ≤ f (z) ≤ f (d) for all z ∈ D. Since C is not ordered,
none of this makes any sense at all for complex-valued functions!
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Maximum Modulus Principle for Bounded Domains

Theorem

Suppose that D is a bounded domain and that f : D ⊂ C→ C is a
continuous function which is analytic in D. Then f attains its
maximum modulus on the boundary ∂D of D. (In the text, the
authors describe such a f as analytic in D and continuous up to
and including the boundary.)

Proof.

The real-valued function z 7→ |f (z)| must attain its maximum on
D. If this occurs on ∂D, then we have nothing to show. However,
if the maximum is attained in the interior, namely in D, then the
Maximum modulus principle implies that f is constant on D. Then
by continuity, f is constant on D. Therefore by default the
maximum of |f (z)| must also occur on ∂D.
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Minimums

Remark

Consider f (z) = z on the domain D = B1(0) = { z : |z | < 1 }.
Note that the minimum of |f (z)| occurs at 0 ∈ D. Of course, f
isn’t a constant function. You will explore what can be said about
a sort of “Minimum Modulus Principle” in the homework.
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Harmonic Functions

Example

Suppose that u is a harmonic function on a simply connected
domain D. Suppose that there is a point (x0, y0) ∈ D such that
u(x , y) ≤ u(x0, y0) for all (x , y) ∈ D. In other words, assume u
attains its maximum on D. Show that u must be constant.
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Solution

Solution.

Let z0 = x0 + iy0. Since D is simply connected, there is a harmonic
conjugate v for u in D. Then f (z) = u(z) + iv(z) is analytic in D.
Hence g(z) = exp(f (z)) is analytic in D. But then since x 7→ ex is
strictly increasing on R, we have

|g(z)| = |ef (z)| = eu(z) ≤ eu(z0) for all z ∈ D.

Therefore g is constant by the Maximum Modulus Principle.
Therefore for all z ∈ D, 0 = g ′(z) = f ′(z)ef (z). Since ef (z) never
vanishes, we must have f ′(z) = 0 for all z ∈ D. Thus f is
constant, and hence u is constant.
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Enough

That is enough for one lecture.
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