Math 43: Spring 2020 Lecture 16 Part II

Dana P. Williams
Dartmouth College

Monday May 4, 2020

Calculus Again

Example

The function $u(x, y)=2-\frac{1}{1-x^{2}-y^{2}}$ is well-defined on the unit disk $D=B_{1}(0)=\left\{(x, y): x^{2}+y^{2}<1\right\}$. While u is not bounded below, it does have a maximum value of 1 at the point $(0,0) \in D$. We will see now that u is not of the form $u(z)=|f(z)|$ with f analytic in D.

Theorem (Maximum Modulus Principle)

Suppose that f is analytic on a domain D. If there is a $z_{0} \in D$ such that

$$
|f(z)| \leq\left|f\left(z_{0}\right)\right| \quad \text { for all } z \in D
$$

then f is constant.

Remark

(1) Colloquially, a non-constant analytic function can not attain its maximum modulus on any domain.
(2) The homework problem that an analytic function with constant modulus on a domain D must be constant is a special case.
(3) What the Maximum Modulus Principle does not say: note that $f(z)=z$ is bounded by $M=1$ on the domain $D=B_{1}(0)=\{z:|z|<1\}$. Of course, it is not a constant function. That is because it does not attain its maximum modulus on D.

Lemma A

Lemma (A)

Suppose $f:[0,2 \pi] \rightarrow \mathbf{R}$ is continuous and such that $0 \leq f(x) \leq M$ for all $x \in[0,2 \pi]$. If

$$
M=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x
$$

then $f(x)=M$ for all $x \in[0,2 \pi]$.

Proof.

We have

$$
0=\frac{1}{2 \pi} \int_{0}^{2 \pi}(M-f(x)) d x
$$

Since $M-f(x) \geq 0$ and $x \mapsto M-f(x)$ is continuous, we must have $M-f(x)=0$ for all x.

Lemma B

Lemma (A)

Suppose that f is analytic in the disk $D=B_{R}\left(z_{0}\right)$ and that

$$
|f(z)| \leq\left|f\left(z_{0}\right)\right| \quad \text { for all } z \in D .
$$

Then f is constant.

Proof.

You showed on homework ($\S 4.5 \# 8$) that the Cauchy Integral
Formula implies that for all $0<r<R$, we have

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta
$$

Proof Continued

Proof.

Let $M=\left|f\left(z_{0}\right)\right|$. Then

$$
M=\left|f\left(z_{0}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+r e^{i \theta}\right)\right| d \theta \leq \frac{1}{2 \pi} M \cdot 2 \pi=M
$$

Hence

$$
M=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+r e^{i \theta}\right)\right| d \theta
$$

Therefore by Lemma A, $M=\left|f\left(z_{0}+r e^{i \theta}\right)\right|$ for all $\theta \in[0,2 \pi]$.

Proof Continued

Figure: The modulus is constant on every intermediate circle

Proof.

Since the modulus is constantly equal to $M=\left|f\left(z_{0}\right)\right|$ on every circle of radius $0<r<R$, the modulus is constant in all of D. But we proved on homework that this implies f itself is constant. This proves the lemma.

Proof of the MMP

Proof of the Theorem.

Suppose that for $z_{0} \in D$, we have $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ for all $z \in D$. To see that this forces f to be constant, it will suffice to see that $|f(z)|$ is constant on D. Suppose to the contrary of what we want to prove, $|f(z)|$ is not constant. Then there is a $z_{1} \in D$ such that $\left|f\left(z_{1}\right)\right|<\left|f\left(z_{0}\right)\right|$. Since D is connected, there is a contour Γ in D from z_{0} to z_{1}. Let $z:[0,1] \rightarrow D$ be an admissible parameterization of Γ. Note that $z(0)=z_{0}$ and $z(1)=z_{1}$.

Proof of MMP

Let $A=\{s \in[0,1]$:
$|f(z(t))|=\left|f\left(z_{0}\right)\right|$ for all $\left.0 \leq t \leq s\right\}$.
Let $t_{0}=\mathrm{I} . \mathrm{u} . \mathrm{b}$. A. Note that $0 \in A$ and
$1 \notin A$.
Since $|f(z(t))|=\left|f\left(z_{0}\right)\right|$ for all $0 \leq t<t_{0}$, we must have $t_{0} \in A$ by continuity. Moreover, if $t_{0}<t_{1}$, then there is $t_{0}<t<t_{1}$ such that $|f(z(t))|<\left|f\left(z_{0}\right)\right|$. But there is a $r>0$ such that $B_{r}\left(z\left(t_{0}\right)\right) \subset D$. But then for all $z \in B_{r}\left(z\left(t_{0}\right)\right)$, we have $|f(z)| \leq\left|f\left(z\left(t_{0}\right)\right)\right|$. Then by Lemma B, f is constant in $B_{r}\left(z\left(t_{0}\right)\right)$. This contradicts our choice of t_{0}.

This completes the proof of the Maximum Modulus Principle.

Remark (The Extreme Value Theorem from Calculus)

If D is a bounded domain, then the closure, \bar{D}, of D is the union of D and its boundary ∂D. Then \bar{D} is closed and bounded. The the Extreme Value Theorem from multivariable calculus tells us that a continuous real-valued function f on \bar{D} must attain its maximum and minimum on \bar{D}. This means there are points $c, d \in \bar{D}$ such that $f(c) \leq f(z) \leq f(d)$ for all $z \in \bar{D}$. Since \mathbf{C} is not ordered, none of this makes any sense at all for complex-valued functions!

Maximum Modulus Principle for Bounded Domains

Theorem

Suppose that D is a bounded domain and that $f: \bar{D} \subset \mathbf{C} \rightarrow \mathbf{C}$ is a continuous function which is analytic in D. Then f attains its maximum modulus on the boundary ∂D of D. (In the text, the authors describe such a f as analytic in D and continuous up to and including the boundary.)

Proof.

The real-valued function $z \mapsto|f(z)|$ must attain its maximum on \bar{D}. If this occurs on ∂D, then we have nothing to show. However, if the maximum is attained in the interior, namely in D, then the Maximum modulus principle implies that f is constant on D. Then by continuity, f is constant on \bar{D}. Therefore by default the maximum of $|f(z)|$ must also occur on ∂D.

Minimums

Remark

Consider $f(z)=z$ on the domain $D=B_{1}(0)=\{z:|z|<1\}$. Note that the minimum of $|f(z)|$ occurs at $0 \in D$. Of course, f isn't a constant function. You will explore what can be said about a sort of "Minimum Modulus Principle" in the homework.

Harmonic Functions

Example

Suppose that u is a harmonic function on a simply connected domain D. Suppose that there is a point $\left(x_{0}, y_{0}\right) \in D$ such that $u(x, y) \leq u\left(x_{0}, y_{0}\right)$ for all $(x, y) \in D$. In other words, assume u attains its maximum on D. Show that u must be constant.

Solution.

Let $z_{0}=x_{0}+i y_{0}$. Since D is simply connected, there is a harmonic conjugate v for u in D. Then $f(z)=u(z)+i v(z)$ is analytic in D. Hence $g(z)=\exp (f(z))$ is analytic in D. But then since $x \mapsto e^{x}$ is strictly increasing on \mathbf{R}, we have

$$
|g(z)|=\left|e^{f(z)}\right|=e^{u(z)} \leq e^{u\left(z_{0}\right)} \quad \text { for all } z \in D
$$

Therefore g is constant by the Maximum Modulus Principle. Therefore for all $z \in D, 0=g^{\prime}(z)=f^{\prime}(z) e^{f(z)}$. Since $e^{f(z)}$ never vanishes, we must have $f^{\prime}(z)=0$ for all $z \in D$. Thus f is constant, and hence u is constant.

Enough

That is enough for one lecture.

