Math 43: Spring 2020 Lecture 18 Summary

Dana P. Williams

Dartmouth College

Friday May 8, 2020

- **1** We should be recording.
- We will have our midterm on Wednesday.
- The midterm will cover up to and including today's lecture.
- **•** This means up to and including §5.3 of the text.
- I will distribute the exam after class time on Wednesday, and you must upload your completed exam by the beginning of class on Friday.

Taylor Series

Definition

Suppose that f is analytic at z_0 . Then the Taylor series for f about z_0 is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n.$$

When $z_0 = 0$, this series is also called the MacLaurin series for f.

Theorem (Taylor's Theorem)

Suppose that f is analytic in $B_R(z_0)$. Then the Taylor series for f about z_0 converges absolutely to f(z) for all $z \in B_R(z_0)$. Furthermore the convergence if uniform in every closed sub-disk

$$\overline{B_r(z_0)} = \{ z \in \mathbf{C} : |z - z_0| \le r \}$$

provided only that 0 < r < R.

Remark

Taylor's Theorem is way cooler than we have any right to expect based on our Calculus II experience. If f is analytic in a domain Dand $z_0 \in D$, then the Taylor series for f converges to f(z) in the largest disk $B_R(z_0)$ such that $B_R(z_0) \subset D!$

Theorem

Suppose that f is analytic in a disk $B_R(z_0)$ with Taylor series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 for all $|z - z_0| < R$.

Then the Taylor series for f' is given by "term-by-term differentiation". That is,

$$f'(z) = \sum_{n=1}^{\infty} na_n(z-z_0)^{n-1}$$
 for all $|z-z_0| < R$.

The Cauchy Product

Definition

The Cauchy product of the series

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n \quad \text{and} \quad \sum_{n=0}^{\infty} b_n (z-z_0)^n$$

is given by

$$\sum_{n=0}^{\infty} c_n (z-z_0)^n$$

where

$$c_n=\sum_{k=0}^n a_k b_{n-k}.$$

Theorem

Suppose that f and g are analtyic at z_0 with Taylor series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 and $g(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n$

about z_0 . Then the Taylor series for fg about z_0 is given by the Cauchy product

$$(fg)(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$$

where

$$c_n=\sum_{k=0}^n a_k b_{n-k}.$$