Math 43: Spring 2020 Lecture 19 Summary

Dana P. Williams

Dartmouth College

Monday May 11, 2020

This Week

- We should be recording. Also, "extra credit" points for anyone who reminds me to stop recording when this review is over.
- ② Our Exam Wednesday covers through and including section 5.3 in the text and all of lecture 19 (aka this one).
- There is a practice exam as well as solutions to the homework up to and including today's assignment available on the assignments page.
- If at all possible, your neat and polished solutions, should be written on the exam itself—with extra pages added if necessary—including the cover page (with your name) and score sheet.
- Your solutions should be uploaded by class time on Friday (10:10am EDT).
- Keep in mind that you can bring me questions both in office hours tomorrow and during or class meeting time on Wednesday.
- Just as with the preliminary exam, Friday's lecture will be recorded during our class meeting time.

Power Series

Definition

A series of the form

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n \tag{1}$$

with $a_n, z_0 \in \mathbf{C}$ is called a power series centered at z_0 .

Theorem

Let $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a power series centered at z_0 . Then there is a $0 \le R \le \infty$ such that

- **1** the series converges absolutely if $|z z_0| < R$,
- 2 The series diverges if $|z z_0| > R$, and
- the series converges uniformly on any closed subdisk $D_r = \{ z : |z z_0| \le r \}$ provided 0 < r < R.

A Picture to Remember

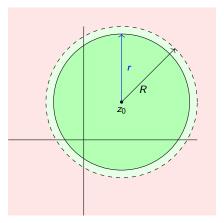


Figure: The Radius of Convergence of a power series $\sum_{n=0}^{\infty} a_n(z-z_0)$

Uniform is Good

$\mathsf{Theorem}$

Suppose that (f_n) is a sequence of continuous complex-valued functions on a set $D \subset \mathbf{C}$. If $f_n \to f$ uniformly on on D, then f is continuous on D.

Theorem

Suppose that (f_n) is a sequence of continuous functions on a set D containing a contour Γ . If $f_n \to f$ uniformly on D, then f is continuous on D—and hence on Γ —and

$$\lim_{n} \int_{\Gamma} f_{n}(z) dz = \int_{\Gamma} f(z) dz.$$

The Safety of our Complex World

$\mathsf{Theorem}$

Suppose that (f_n) is a sequence of analytic functions on a domain D. If $f_n \to f$ uniformly on D, then f is analytic on D.

Theorem (Taylor Series are Unique)

Let $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a power series with radius of convergence

R > 0. Then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \tag{\dagger}$$

is analytic in $D = \{ z : |z - z_0| < R \}$. Moreover,

$$a_n=\frac{f^{(n)}(z_0)}{n!}.$$

Therefore, (\dagger) is the Taylor series for f about z_0 .

An Example

Example

Find the MacLaurin series for $f(z) = z \cos(z^2)$.

Example

Let $f(z) = z \cos(z^2)$. What is $f^{(2021)}(0)$?

Example

$$g(z) = egin{cases} rac{z-\sin(z)}{z^3} & ext{if } z
eq 0, ext{ and } \\ rac{1}{6} & ext{if } z = 0 \end{cases}$$

is an entire function.