
Math 43: Spring 2020
Lecture 19 Part I

Dana P. Williams

Dartmouth College

Monday May 11, 2020

Dana P. Williams Math 43: Spring 2020 Lecture 19 Part I



Power Series

Definition

A series of the form
∞∑
n=0

an(z − z0)n

with an, z0 ∈ C is called a power series centered at z0.

Example

Every Taylor series about z0 is a power series centered at z0.
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General Nonsense

Theorem

Let
∞∑
n=0

an(z − z0)n be a power series centered at z0. Then there is

a 0 ≤ R ≤ ∞ such that

1 the series converges absolutely if |z − z0| < R,
2 The series diverges if |z − z0| > R, and
3 the series converges uniformly on any closed subdisk

Dr = { z : |z − z0| ≤ r } provided 0 < r < R.

Proof.

This is a homework problem using Lemma 2 in the text and some
hints.

Remark

Naturally, we call R the radius of convergence of
∞∑
n=0

an(z − z0)n.
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A Picture to Remember
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r

Figure: The Radius of Convergence of a power series
∑∞

n=0 an(z − z0)
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Uniform is Good

Theorem

Suppose that (fn) is a sequence of continuous complex-valued
functions on a set D ⊂ C. If fn → f uniformly on on D, then f is
continuous on D.

Proof.

Fix z0 ∈ D. Then given ε > 0 we need to find δ > 0 so that
|z − z0| < δ implies |f (z)− f (z0)| < ε. But we can find N such
that N implies that |fN(z)− f (z)| < ε

3 for all z ∈ D. Since fN is
assumed to be continuous at z0, there is a δ > 0 such that
|z − z0| < δ implies |fN(z)− fN(z0)| < ε

3 . Then if |z − z0| < δ, we
have

|f (z)− f (z0)| ≤ |f (z)− fN(z)|+ |fN(z)− fN(z0)|
+ |fN(z0)− f (z0)|

<
ε

3
+
ε

3
+
ε

3
= ε.
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Even Better

Theorem

Suppose that (fn) is a sequence of continuous functions on a set D
containing a contour Γ. If fn → f uniformly on D, then f is
continuous on D—and hence on Γ—and

lim
n

∫
Γ
fn(z) dz =

∫
Γ
f (z) dz .

Proof.

The limit f is continuous by the previous result. Let ε > 0. Let N
be such that n ≥ N implies that |fn(z)− f (z)| < ε

`(Γ)+1 for all
z ∈ D. Then∣∣∣∫

Γ
fn(z) dz −

∫
Γ
f (z) dz

∣∣∣ ≤ ∫
Γ
|fn(z)− f (z)| dz

≤ ε

`(Γ) + 1
`(Γ) < ε.
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Horrors of the Real World

−1 −0.5 0.5 1

1
Let fn : [−1, 1]→ R be given by

fn(x) =
√

1
n2 + x2. Then f is

differentiable—smooth in fact.
Moreover,
x2 ≤ fn(x)2 = 1

n2 + x2 ≤
(
|x |+ 1

n

)2

implies that |x | ≤ fn(x) ≤ |x |+ 1
n .

Hence if f (x) = |x |, then fn → f uniformly on [−1, 1]. Sadly,
f (x) = |x | is not differentiable at x = 0!

Remark (Advanced)

Remarkably, Weierstrass proved in the 19th century that the
uniform limit of smooth functions, while continuous, need not be
differentiable at a single point! Of course, we can’t give a formula
for such a function, but they exist in abundance!
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The Safety of our Complex World

Theorem

Suppose that (fn) is a sequence of analytic functions on a domain
D. If fn → f uniformly on D, then f is analytic on D.

z0r

D

Fix z0 ∈ D. Since z0 is arbitrary, it will
suffice to see that f ′(z0) exists. Since D
is open, there is a r > 0 such that
Br (z0) ⊂ D. Thus we can replace D by
Br (z0) and assume that the D is simply
connected. Let Γ be any closed contour
in D = Br (z0).

Since fn → f uniformly, f is continuous and∫
Γ
f (z) dz = lim

n

∫
Γ
fn(z) dz . (‡)

Return
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Proof Continued

Proof.

Since D is simply connected and each fn is analytic on D, each of
the integrals on the right of (‡) are zero by the Cauchy Integral
Theorem. Hence the integral of f is also zero. Since f is
continuous and Γ is any closed contour in D, f is analytic in D by
Morera’s Theorem. Hence f ′(z0) exists.
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More Good Stuff to Come

Remark

We will apply these impressive results to power series in the second
part of the lecture.

Time for a Break.
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