Math 43: Spring 2020 Lecture 19 Part I

Dana P. Williams

Dartmouth College

Monday May 11, 2020

Power Series

Definition

A series of the form

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$

with $a_n, z_0 \in \mathbf{C}$ is called a power series centered at z_0 .

Example

Every Taylor series about z_0 is a power series centered at z_0 .

General Nonsense

Theorem

Let $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a power series centered at z_0 . Then there is a $0 \le R \le \infty$ such that

- the series converges absolutely if $|z z_0| < R$,
- 2 The series diverges if $|z z_0| > R$, and
- the series converges uniformly on any closed subdisk

$$D_r = \{ z : |z - z_0| \le r \} \text{ provided } 0 < r < R.$$

Proof.

This is a homework problem using Lemma 2 in the text and some hints.

Remark

Naturally, we call R the radius of convergence of $\sum_{n=0}^{\infty} a_n (z-z_0)^n$.

A Picture to Remember

Figure: The Radius of Convergence of a power series $\sum_{n=0}^{\infty} a_n(z-z_0)$

Uniform is Good

$\mathsf{Theorem}$

Suppose that (f_n) is a sequence of continuous complex-valued functions on a set $D \subset \mathbf{C}$. If $f_n \to f$ uniformly on on D, then f is continuous on D.

Proof.

Fix $z_0 \in D$. Then given $\epsilon > 0$ we need to find $\delta > 0$ so that $|z-z_0| < \delta$ implies $|f(z)-f(z_0)| < \epsilon$. But we can find N such that N implies that $|f_N(z)-f(z)| < \frac{\epsilon}{3}$ for all $z \in D$. Since f_N is assumed to be continuous at z_0 , there is a $\delta > 0$ such that $|z-z_0| < \delta$ implies $|f_N(z)-f_N(z_0)| < \frac{\epsilon}{3}$. Then if $|z-z_0| < \delta$, we have

$$|f(z) - f(z_0)| \le |f(z) - f_N(z)| + |f_N(z) - f_N(z_0)| + |f_N(z_0) - f(z_0)|$$

 $< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$

Even Better

$\mathsf{Theorem}$

Suppose that (f_n) is a sequence of continuous functions on a set D containing a contour Γ . If $f_n \to f$ uniformly on D, then f is continuous on D—and hence on Γ —and

$$\lim_{n}\int_{\Gamma}f_{n}(z)\,dz=\int_{\Gamma}f(z)\,dz.$$

Proof.

The limit f is continuous by the previous result. Let $\epsilon>0$. Let N be such that $n\geq N$ implies that $|f_n(z)-f(z)|<\frac{\epsilon}{\ell(\Gamma)+1}$ for all $z\in D$. Then

$$\left| \int_{\Gamma} f_n(z) dz - \int_{\Gamma} f(z) dz \right| \leq \int_{\Gamma} |f_n(z) - f(z)| dz$$
$$\leq \frac{\epsilon}{\ell(\Gamma) + 1} \ell(\Gamma) < \epsilon.$$

Horrors of the Real World

Let
$$f_n: [-1,1] \to \mathbf{R}$$
 be given by $f_n(x) = \sqrt{\frac{1}{n^2} + x^2}$. Then f is differentiable—smooth in fact. Moreover, $x^2 \le f_n(x)^2 = \frac{1}{n^2} + x^2 \le \left(|x| + \frac{1}{n}\right)^2$

implies that $|x| \le f_n(x) \le |x| + \frac{1}{n}$.

Hence if f(x) = |x|, then $f_n \to f$ uniformly on [-1,1]. Sadly, f(x) = |x| is **not** differentiable at x = 0!

Remark (Advanced)

Remarkably, Weierstrass proved in the 19th century that the uniform limit of smooth functions, while continuous, need not be differentiable at a single point! Of course, we can't give a formula for such a function, but they exist in abundance!

The Safety of our Complex World

$\mathsf{Theorem}$

Suppose that (f_n) is a sequence of analytic functions on a domain D. If $f_n \to f$ uniformly on D, then f is analytic on D.

Fix $z_0 \in D$. Since z_0 is arbitrary, it will suffice to see that $f'(z_0)$ exists. Since D is open, there is a r > 0 such that $B_r(z_0) \subset D$. Thus we can replace D by $B_r(z_0)$ and assume that the D is simply connected. Let Γ be any closed contour in $D = B_r(z_0)$.

Since $f_n \to f$ uniformly, f is continuous and

$$\int_{\Gamma} f(z) dz = \lim_{n} \int_{\Gamma} f_{n}(z) dz. \tag{\ddagger}$$

▶ Return

Proof Continued

Proof.

Since D is simply connected and each f_n is analytic on D, each of the integrals on the right of (\ddagger) are zero by the Cauchy Integral Theorem. Hence the integral of f is also zero. Since f is continuous and Γ is any closed contour in D, f is analytic in D by Morera's Theorem. Hence $f'(z_0)$ exists.

More Good Stuff to Come

Remark

We will apply these impressive results to power series in the second part of the lecture.

Time for a Break.