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Death to Repeated Differentiation

Theorem (Taylor Series are Unique)

Let
∞∑
n=0

an(z − z))
n be a power series with radius of convergence

R > 0. Then

f (z) =
∞∑
n=0

an(z − z0)n (†)

is analytic in D = { z : |z − z0| < R }. Moreover,

an =
f (n)(z0)

n!
.

Therefore, (†) is the Taylor series for f about z0.
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Proof

Proof.

To see that f is analytic in all of D, it will suffice to see that f is
analytic in Dr = { z : |z − z0| < r } for any 0 < r < R. Let
Fn(z) =

∑n
k=0 ak(z − z0)k be the nth partial sum of (†). We know

from our general theorem on power series that Fn → f uniformly
on Dr . Since each Fn is a polynomial, it is entire and hence
analytic on Dr . By what we proved earlier, this means f is analytic
on Dr . This proves the first assertion.

Let Cr be the positively oriented circle |z − z0| = r . Fix m ∈ N.
Then if w ∈ Cr ,∣∣∣ f (w)

(w − z0)m+1
− Fn(w)

(w − z0)m+1

∣∣∣ =
1

rm+1

∣∣f (w)− Fn(w)
∣∣.

It follows that
Fn(w)

(w − z0)m+1
→ f (w)

(w − z0)m+1
uniformly on Cr .

Dana P. Williams Math 43: Spring 2020 Lecture 19 Part II



Proof Continued

Proof.

Therefore∫
Cr

f (w)

(w − z0)m+1
dw = lim

n→∞

∫
Cr

Fn(w)

(w − z0)m+1
dw

= lim
n→∞

n∑
k=0

ak

∫
Cr

(w − z0)k

(w − z0)m+1
dw

= 2πi · am.

But the left-hand side is

2πi

n!
f (m)(z0).

Hence

am =
f (m)(z0)

m!
.
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An Example

Example

Find the MacLaurin series for f (z) = z cos(z2).

Solution.

Repeated differentiation would not end well. But for all w ,

cos(w) = 1− w2

2
+

w4

4!
− · · · =

∞∑
n=0

(−1)n
w2n

(2n)!
.

Hence for any z ∈ C we have

z cos(z2) = z
∞∑
n=0

(−1)n
(z2)2n

(2n)!
=
∞∑
n=0

(−1)n
z4n+1

(2n)!
(1)

= z − z5

2
+

z9

4!
− · · · .

By the previous result, this must be the MacLaurin series for
f (z) = z cos(z2).
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Example Continued

Example

Let f (z) = z cos(z2). What is f (2021)(0)?

Solution.

Let f (z) = a0 + a1z + · · · as on the previous slide. Then

a2021 =
f (2021)(0)

(2021)!
.

But 2021 = 4(505) + 1. Hence, using (1)

a2021 = (−1)505 · 1

(2 · 505)!
.

Therefore

f (2021)(0) = −(2021)!

(1010)!
.
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Another Example

Let f (z) = z − sin(z). Then for all z ,

f (z) = z − (z − z3

3!
+

z5

5!
− · · · )

=
z3

3!
− z5

5!
+ · · · =

∞∑
n=1

(−1)n−1
z2n+1

(2n + 1)!

Hence if z 6= 0,

z − sin(z)

z3
=

1

6
− z2

5!
+ · · · =

∞∑
n=1

(−1)n−1
z2n−2

(2n + 1)!
.

But the right-hand side is an entire function. Hence

g(z) =

{
z−sin(z)

z3
if z 6= 0, and

1
6 if z = 0

is an entire function.
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Enough for Today

Remark

This completes §5.3 and the material for the midterm on
Wednesday. Get a head start and have some good questions ready
for class on Monday and Wednesday as well as office hours on
Tuesday.

That is all for today.
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