Math 43: Spring 2020 Lecture 19 Part II

Dana P. Williams

Dartmouth College

Monday May 11, 2020

Death to Repeated Differentiation

Theorem (Taylor Series are Unique)

Let $\sum_{n=0}^{\infty} a_n(z-z_1)^n$ be a power series with radius of convergence R > 0. Then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \tag{\dagger}$$

is analytic in $D = \{ z : |z - z_0| < R \}$. Moreover,

$$a_n = \frac{f^{(n)}(z_0)}{n!}.$$

Therefore, (\dagger) is the Taylor series for f about z_0 .

Proof

Proof.

To see that f is analytic in all of D, it will suffice to see that f is analytic in $D_r = \{z : |z-z_0| < r\}$ for any 0 < r < R. Let $F_n(z) = \sum_{k=0}^n a_k (z-z_0)^k$ be the n^{th} partial sum of (\dagger) . We know from our general theorem on power series that $F_n \to f$ uniformly on D_r . Since each F_n is a polynomial, it is entire and hence analytic on D_r . By what we proved earlier, this means f is analytic on D_r . This proves the first assertion.

Let C_r be the positively oriented circle $|z - z_0| = r$. Fix $m \in \mathbf{N}$. Then if $w \in C_r$,

$$\left|\frac{f(w)}{(w-z_0)^{m+1}} - \frac{F_n(w)}{(w-z_0)^{m+1}}\right| = \frac{1}{r^{m+1}} |f(w) - F_n(w)|.$$

It follows that $\frac{F_n(w)}{(w-z_0)^{m+1}} o \frac{f(w)}{(w-z_0)^{m+1}}$ uniformly on C_r .

Proof Continued

Proof.

Therefore

$$\int_{C_r} \frac{f(w)}{(w - z_0)^{m+1}} dw = \lim_{n \to \infty} \int_{C_r} \frac{F_n(w)}{(w - z_0)^{m+1}} dw$$

$$= \lim_{n \to \infty} \sum_{k=0}^n a_k \int_{C_r} \frac{(w - z_0)^k}{(w - z_0)^{m+1}} dw$$

$$= 2\pi i \cdot a_m.$$

But the left-hand side is

$$\frac{2\pi i}{n!}f^{(m)}(z_0).$$

Hence

$$a_m = \frac{f^{(m)}(z_0)}{m!}. \quad \Box$$

An Example

Example

Find the MacLaurin series for $f(z) = z \cos(z^2)$.

Solution.

Repeated differentiation would not end well. But for all w,

$$cos(w) = 1 - \frac{w^2}{2} + \frac{w^4}{4!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{w^{2n}}{(2n)!}.$$

Hence for any $z \in \mathbf{C}$ we have

$$z\cos(z^{2}) = z\sum_{n=0}^{\infty} (-1)^{n} \frac{(z^{2})^{2n}}{(2n)!} = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{4n+1}}{(2n)!}$$
(1)
$$= z - \frac{z^{5}}{2} + \frac{z^{9}}{4!} - \cdots$$

By the previous result, this must be the MacLaurin series for $f(z) = z \cos(z^2)$.

Example Continued

Example

Let $f(z) = z \cos(z^2)$. What is $f^{(2021)}(0)$?

Solution.

Let $f(z) = a_0 + a_1 z + \cdots$ as on the previous slide. Then

$$a_{2021} = \frac{f^{(2021)}(0)}{(2021)!}.$$

But 2021 = 4(505) + 1. Hence, using (1)

$$a_{2021} = (-1)^{505} \cdot \frac{1}{(2 \cdot 505)!}.$$

Therefore

$$f^{(2021)}(0) = -\frac{(2021)!}{(1010)!}. \quad \Box$$

Another Example

Let $f(z) = z - \sin(z)$. Then for all z,

$$f(z) = z - \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots\right)$$
$$= \frac{z^3}{3!} - \frac{z^5}{5!} + \cdots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^{2n+1}}{(2n+1)!}$$

Hence if $z \neq 0$,

$$\frac{z-\sin(z)}{z^3}=\frac{1}{6}-\frac{z^2}{5!}+\cdots=\sum_{n=1}^{\infty}(-1)^{n-1}\frac{z^{2n-2}}{(2n+1)!}.$$

But the right-hand side is an entire function. Hence

$$g(z) = egin{cases} rac{z-\sin(z)}{z^3} & ext{if } z
eq 0, ext{ and } \\ rac{1}{6} & ext{if } z = 0 \end{cases}$$

is an entire function.

Enough for Today

Remark

This completes §5.3 and the material for the midterm on Wednesday. Get a head start and have some good questions ready for class on Monday and Wednesday as well as office hours on Tuesday.

That is all for today.