Math 43: Spring 2020 Lecture 19 Part II

Dana P. Williams
Dartmouth College

Monday May 11, 2020

Death to Repeated Differentiation

Theorem (Taylor Series are Unique)

Let $\left.\sum^{\infty} a_{n}(z-z)\right)^{n}$ be a power series with radius of convergence
$R>0$. Then

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

is analytic in $D=\left\{z:\left|z-z_{0}\right|<R\right\}$. Moreover,

$$
a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!} .
$$

Therefore, (\dagger) is the Taylor series for f about z_{0}.

Proof

Proof.

To see that f is analytic in all of D, it will suffice to see that f is analytic in $D_{r}=\left\{z:\left|z-z_{0}\right|<r\right\}$ for any $0<r<R$. Let $F_{n}(z)=\sum_{k=0}^{n} a_{k}\left(z-z_{0}\right)^{k}$ be the $n^{t h}$ partial sum of (\dagger). We know from our general theorem on power series that $F_{n} \rightarrow f$ uniformly on D_{r}. Since each F_{n} is a polynomial, it is entire and hence analytic on D_{r}. By what we proved earlier, this means f is analytic on D_{r}. This proves the first assertion.

Let C_{r} be the positively oriented circle $\left|z-z_{0}\right|=r$. Fix $m \in \mathbf{N}$. Then if $w \in C_{r}$,

$$
\left|\frac{f(w)}{\left(w-z_{0}\right)^{m+1}}-\frac{F_{n}(w)}{\left(w-z_{0}\right)^{m+1}}\right|=\frac{1}{r^{m+1}}\left|f(w)-F_{n}(w)\right| .
$$

It follows that $\frac{F_{n}(w)}{\left(w-z_{0}\right)^{m+1}} \rightarrow \frac{f(w)}{\left(w-z_{0}\right)^{m+1}}$ uniformly on C_{r}.

Proof Continued

Proof.

Therefore

$$
\begin{aligned}
\int_{C_{r}} \frac{f(w)}{\left(w-z_{0}\right)^{m+1}} d w & =\lim _{n \rightarrow \infty} \int_{C_{r}} \frac{F_{n}(w)}{\left(w-z_{0}\right)^{m+1}} d w \\
& =\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k} \int_{C_{r}} \frac{\left(w-z_{0}\right)^{k}}{\left(w-z_{0}\right)^{m+1}} d w \\
& =2 \pi i \cdot a_{m}
\end{aligned}
$$

But the left-hand side is

$$
\frac{2 \pi i}{n!} f^{(m)}\left(z_{0}\right)
$$

Hence

$$
a_{m}=\frac{f^{(m)}\left(z_{0}\right)}{m!}
$$

An Example

Example

Find the MacLaurin series for $f(z)=z \cos \left(z^{2}\right)$.

Solution.

Repeated differentiation would not end well. But for all w,

$$
\cos (w)=1-\frac{w^{2}}{2}+\frac{w^{4}}{4!}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{w^{2 n}}{(2 n)!}
$$

Hence for any $z \in \mathbf{C}$ we have

$$
\begin{aligned}
z \cos \left(z^{2}\right) & =z \sum_{n=0}^{\infty}(-1)^{n} \frac{\left(z^{2}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{4 n+1}}{(2 n)!} \\
& =z-\frac{z^{5}}{2}+\frac{z^{9}}{4!}-\cdots
\end{aligned}
$$

By the previous result, this must be the MacLaurin series for $f(z)=z \cos \left(z^{2}\right)$.

Example Continued

Example

Let $f(z)=z \cos \left(z^{2}\right)$. What is $f^{(2021)}(0)$?

Solution.

Let $f(z)=a_{0}+a_{1} z+\cdots$ as on the previous slide. Then

$$
a_{2021}=\frac{f^{(2021)}(0)}{(2021)!}
$$

But $2021=4(505)+1$. Hence, using (1)

$$
a_{2021}=(-1)^{505} \cdot \frac{1}{(2 \cdot 505)!} .
$$

Therefore

$$
f^{(2021)}(0)=-\frac{(2021)!}{(1010)!}
$$

Another Example

Let $f(z)=z-\sin (z)$. Then for all z,

$$
\begin{aligned}
f(z) & =z-\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots\right) \\
& =\frac{z^{3}}{3!}-\frac{z^{5}}{5!}+\cdots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{z^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Hence if $z \neq 0$,

$$
\frac{z-\sin (z)}{z^{3}}=\frac{1}{6}-\frac{z^{2}}{5!}+\cdots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{z^{2 n-2}}{(2 n+1)!}
$$

But the right-hand side is an entire function. Hence

$$
g(z)= \begin{cases}\frac{z-\sin (z)}{z^{3}} & \text { if } z \neq 0, \text { and } \\ \frac{1}{6} & \text { if } z=0\end{cases}
$$

is an entire function.

Enough for Today

Remark

This completes $\S 5.3$ and the material for the midterm on Wednesday. Get a head start and have some good questions ready for class on Monday and Wednesday as well as office hours on Tuesday.

That is all for today.

