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The Geometry of Complex Addition

Back in grade school, we were taught that addition involved “trips
on the number line”. For example, the sum 4− 5 := 4 + (−5) was
a trip of 4 units to the right followed by 5 units to the left. Thank
goodness we’re past that now. But things are much more
interesting in 2-dimensions. Complex addition is just vector
addition.

z

w z + w

(a) Vector Addition

z

rz

(b) Multiplication by r > 1

Multiplication by a real constant r is just scalar multiplication of
vectors.
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Polar Coordinates

To understand what complex multiplication “looks like”, we need
to recall what polar coordinates are.

r

z = a+ ib

θ

a

ib

If
z = a + ib, then its polar coordinates
(r , θ) are determined as follows. We
let r = |z | =

√
a2 + b2. The angle

θ is determined by the equations

cos(θ) =
a

r
and sin(θ) =

b

r
.

Many texts prefer using tan(θ) = b
a

with appropriate noises about what to
do if a = 0. Note that θ = arctan

(
b
a

)
only if a > 0.

Remark

Keep in mind that θ is only determined up to an integer multiple
of 2π.
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Polar Form of a Complex Number

Note that if z = a + ib has polar coordinates (r , θ), then
a = r cos(θ) and b = r sin(θ). Hence
z = rcos(θ) + ir sin(θ) = r

(
cos(θ) + i sin(θ)

)
. For reasons best

known to the authors of our text, they define
cis(θ) = cos(θ) + i sin(θ). Then we can write z = r cis(θ).

Definition

Let z be a nonzero complex number with polar coordinates (r , θ).
Then we call r cis(θ) the polar form of z . Furthermore, we call θ
an argument of z . The set of arguments of z is denoted by arg(z).

Remark

I’ve empolyed the “cis” notation for consistency with the textbook.
We shall dispose of it as soon as we can and replace it with
something better.
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An Example of Polar Form

Let z = 1− i
√

3. We immediately see that r =
√

1 + 3 = 2. To
figure out θ, we consider

cos(θ) =
1

2
and sin(θ) = −

√
3

2
.

α

1
2

−i
√
3
2

1

To figure
out what θ is, we use a “reference
triangle” and a little right-triangle
trigonometry. Then α = π

3 .
Hence θ = −π

3 + 2πk , with k ∈ Z.
Then arg(z) = {−π

3 + 2πk : k ∈ Z },
and the following
are polar forms of z = 1− i

√
3:

2 cis
(
−π

3

)
and 2 cis

(5π

3

)
.

Of course, there are infinitely many polar forms of z .
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The Argument

Remark

The map z 7→ arg(z) is not a function in the usual sense. This is
because arg(z) is a set not a simply a number. I’ll refer to
z 7→ arg(z) as a set-valued function. The text calls it a
“multivalued-function” which in my opinion is a oxymoron.

τ

To get a bona fide real-valued
function we have to make a choice for
each non-zero z . As a crude example, if τ ∈ R,
then the text defines argτ (z) to be the unique
element in the intersection arg(z) ∩ (τ, τ + 2π].
Note that argτ is not defined if z = 0,
and has a jump discontinuity along the ray
{ z ∈ C : τ ∈ arg(z) }.

Dana P. Williams Lecture 2.1



The Principal Arugument Function

Definition

If z 6= 0, then we define the principal value of the argument of z to
be Arg(z) := arg−π(z)

Note that Arg(i) = π
2 and

Arg(−1− i) = −3π
4 . Also, Arg(1− i

√
3) = −π

3 .

But arg0(1− i
√

3) = 5π
3 .

Take Note: There is nothing special
about the principal value, Arg(z), of z . It is just
a choice that may, or may not, be convenient
in the moment. In fact all the functions
z 7→ argτ (z) are to be regarded with suspicion and dragged out
only under duress.
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Back to High School Trigonometry

If you had a good high school trigonometry course, then you saw
the sum formulas for sine and cosine:

sin(A + B) = sin(A) cos(B) + cos(A) sin(B) and

cos(A + B) = cos(A) cos(B)− sin(A) sin(B).

In all honesty, it is not so easy to give easy proofs of these
identities unless A, B, and A + B are acute angles, but we will
accept them as given.
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The Key Result

Theorem

Let z = r cis(θ) and w = ρ cis(ϕ). Then we have the following
formulas.

zw = rρ cis(θ + ϕ) and
z

w
=

r

ρ
cis(θ − ϕ).

Proof.

We calculate

zw = rρ
(
cos(θ) + i sin(θ)

)(
cos(ϕ) + i sin(ϕ)

)
= rρ

[
cos(θ) cos(ϕ)− sin(θ) sin(ϕ)

+ i
(
cos(θ) sin(ϕ) + sin(θ) cos(ϕ)

)]
= rρ

[
cos(θ + ϕ) + i sin(θ + ϕ)

]
= rρ cis(θ + ϕ).

This establishes the first equation.
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The Proof Continued

Proof Continued.

For the second equation, consider the special case

1

w
=

1

ρ
(
cos(ϕ) + i sin(ϕ)

)
=

1

ρ
· 1

cos(ϕ) + i sin(ϕ)
· cos(ϕ)− i sin(ϕ)

cos(ϕ)− i sin(ϕ)

=
1

ρ

(
cos(ϕ)− i sin(ϕ)

)
=

1

ρ

(
cos(−ϕ) + i sin(−ϕ)

)
=

1

ρ
cis(−ϕ).

Now z
w = z 1

w = (r cis(θ))(1ρ cis(−ϕ)) and we can use the first
equation to establish the second.
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This is Really Cool

θ

ϕ

θ + ϕ

z

w

zw
Let z = r cis(θ) and let w = ρ cis(ϕ).
Then the previous Theorem
implies that zw = rρ cis(θ + ϕ). Thus
multiplication of w by z means that
zw is obtained by rotating w by θ and
stretching its length by a factor of r .
Now suppose that z = cis(θ).
Geometrically, we happens to integral
powers of z—that is, zn? Well,
since |z | = 1, zn = cis(nθ) is always
on the unit circle and gets rotated
by θ radians counterclockwise with
each power of z . Notice that if n is
negative, then we rotate clockwise!
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Some Important Corollaries

We get some important corollaries from our theorem on complex
multiplication: r cis(θ) · ρ cis(ϕ) = rρ cis(θ + ϕ).

Corollary

If z and w are complex numbers, then |zw | = |z ||w |.

Corollary

If z and w are nonzero complex numbers, then

arg(zw) = arg(z) + arg(w)

= { θ + ϕ : θ ∈ arg(z) and ϕ ∈ arg(w) }.
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The Argument is Complicated

Remark

The pretty formula arg(zw) = arg(z) + arg(w) is all well and good,
but it doesn’t usually work when we force functions like Arg into
play.
Note that Arg(i) = π

2 , Arg(−1) = π, and Arg(−i) = −π
2 .

But

− π

2
= Arg(−i) = Arg((−1)i) 6= Arg(−1) + Arg(i) =

3π

2
.

Time for a Break!
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