Math 43: Spring 2020 Lecture 2 Part 2

Dana P. Williams
Dartmouth College

April 1, 2020

- Single variable calculus gets much more interesting once we have some functions around that aren't simply polynomials or rational functions.
- One of the most interesting and fundamental is the natural exponential function $f(x)=e^{x}$.
- But we can't "just change the x to a z ". What would e^{i} or even 2^{i} mean?
- For motivation, consider what sort of properties we want our complex exponential function $z \mapsto e^{z}$ to have once we make sense of the symbol e^{z}.
- At the very least, we want $e^{z+w}=e^{z} e^{w}$ when z and w are arbitrary complex numbers and not just positive integers. After all, this is the way exponents are supposed to work.
- Given that, we want $e^{x+i y}=e^{x} e^{i y}$.

A Little Imagination

The previous slide allows us to guess a good definition for e^{z} if we can guess what $e^{i y}$ should be when $y \in \mathbf{R}$.
We should all be familiar with the MacLaurin series for the natural exponential function:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots
$$

So proceeding formally, without justification, we guess that we should have

$$
\begin{aligned}
e^{i y} & =1+i y-\frac{y^{2}}{2!}-i \frac{y^{3}}{3!}+\frac{y^{4}}{4!}+\cdots \\
& =\left(1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}-\cdots\right)+i\left(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots\right) \\
& =\cos (y)+i \sin (y) \\
& =\operatorname{cis}(y)
\end{aligned}
$$

The Complex Exponential Function

With only the previous speculation as motivation, we define the complex exponential function as follows.

Definition

If $z=z+i y \in \mathbf{C}$, then we define

$$
e^{z}=e^{x}(\cos (y)+i \sin (y))=e^{x} \operatorname{cis}(y)
$$

Remark (Death to cis)

Now that we have what will prove to be a good definition of e^{z} in hand, we will always write $e^{i y}$ in place of $\operatorname{cis}(y)$. It should be tossed aside as low brow childish tripe such as thinking of addition as walks on the number line.
This means the polar form of z with polar coordinates (r, θ) is now $z=r e^{i \theta}$. Then, for example, $r e^{i \theta} \rho e^{i \varphi}=r \rho e^{i(\theta+\varphi)}$.

But is it a Good Definition??

Having pulled this definition out of thin air, we need to prove that our exponential function has some of the properties we want.

Theorem

If $z, w \in \mathbf{C}$, then

$$
\text { (a) } e^{z} e^{w}=e^{z+w} \quad \text { and } \quad \text { (b) } \quad \frac{e^{z}}{e^{w}}=e^{z-w}
$$

Corollary

For all $z \in \mathbf{C}$, we have

$$
\text { (a) } e^{-z}=\frac{1}{e^{z}} \quad \text { and } \quad \text { (b) } \quad\left(e^{z}\right)^{n}=e^{n z} \quad \text { for all } n \in \mathbf{Z}
$$

DeMoivre's Formula

Least you think we haven't done anything, consider the following.

Corollary

If $\theta \in \mathbf{R}$ and $n \in \mathbf{Z}$, then

$$
\left(e^{i \theta}\right)^{n}=e^{i n \theta}
$$

Ok, still not impressed?

Remark

This is a lot cooler looking if you write it out as

$$
\underbrace{(\cos (\theta)+i \sin (\theta))^{n}=\cos (n \theta)+i \sin (n \theta)}_{\text {DeMovire's Formula }}
$$

Example
Simplify $(1-i)^{14}$.

Solution.

$$
\begin{aligned}
(1-i)^{14} & =\left(\sqrt{2} e^{-\frac{\pi}{4}}\right)^{14}=2^{7} e^{-i \frac{7 \pi}{2}} \\
& =128 e^{i\left(\frac{\pi}{2}-4 \pi\right)}=128 e^{i \frac{\pi}{2}} \\
& =128 i
\end{aligned}
$$

Trigonometric Identities

Example

Suppose that $\cos (\theta)=\frac{1}{5}$. What is $\cos (3 \theta)$?

Solution

We can't work out what θ is. Instead, We try to write $\cos (3 \theta)$ in terms of $\cos (\theta)$. Using DeMoivre's Formula,

$$
\begin{aligned}
\cos (3 \theta) & =\operatorname{Re}(\cos \theta+i \sin \theta)^{3} \\
& =\cos ^{3}(\theta)-3 \cos (\theta) \sin ^{2}(\theta) \\
& =\cos ^{3}(\theta)-3 \cos (\theta)\left(1-\cos ^{2}(\theta)\right) \\
& =4 \cos ^{3}(\theta)-3 \cos (\theta)
\end{aligned}
$$

Thus $\cos (3 \theta)=4\left(\frac{1}{5}\right)^{3}-3\left(\frac{1}{5}\right)=-\frac{71}{125}$.

