Math 43: Spring 2020 Lecture 20 Summary

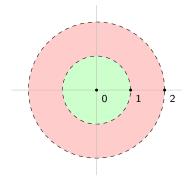
Dana P. Williams

Dartmouth College

Wednesday May 13, 2020

- We should be recording.
- Who's turn is it for extra credit?
- I plan to email the midterm out right after this class meeting is over. Last time I got "distracted by foolishness" and had to be reminded.
- You solutions should be uploaded by class meeting time on Friday.

Annalytic in an Annulus



Consider $f(z) = \frac{1}{(z-1)(z-2)}$. Note that this function is analytic in the annuli $A_1 = \{z : 0 < |z| < 1\},\$ $A_2 = \{z : 1 < |z| < 2\},\$ and $A_3 = \{z : 2 < |z|\}.$ (There is no harm in omitting 0 from A_1 .) Then we used geometric series to verify the following.

Definition

A series of the form $\sum_{n=-\infty}^{\infty} a_n(z-z_0)^n$ is called a Laurent series about z_0 . We will almost always write this in the form

$$\underbrace{\sum_{n=0}^{\infty} a_n (z - z_0)^n}_{\text{power series bit}} + \underbrace{\sum_{j=1}^{\infty} \frac{b_j}{(z - z_0)^j}}_{\text{singular bit}}$$

where $b_j = a_{-j}$.

General Nonsense

Theorem

Suppose that

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{j=1}^{\infty} \frac{b_j}{(z - z_0)^j}$$
(†)

is a Laurent series about z_0 . Then either (‡) converges nowhere or there are $0 \le r \le R \le \infty$ such that the series converges absolutely if

$$z \in A := \{ z : r < |z - z_0| < R \},\$$

and such that the convergence is uniform in every sub-annulus

$$A' = \{ z : r' \le |z - z_0| \le R' \}$$

provided that r < r' < R' < R.

Picture

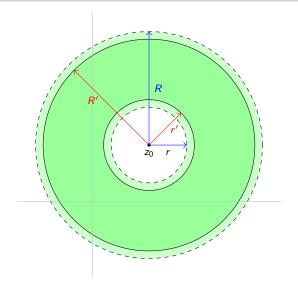


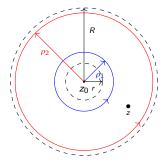
Figure: Convergence for a Laurent Series

Cauchy Again

Theorem (Cauchy's Integral Formula for a Annulus)

Suppose that f is analytic in $A = \{ z : 0 \le r < |z - z_0| < R \le \infty \}$. We let C_{ρ} denote the positively oriented circle $|z - z_0| = \rho$. Then if $r < \rho_1 < \rho_2 < R$ and if $\rho_1 < |z - z_0| < \rho_2$, we have

$$f(z) = \frac{1}{2\pi i} \int_{C_{\rho_2}} \frac{f(w)}{w-z} \, dw - \frac{1}{2\pi i} \int_{C_{\rho_1}} \frac{f(w)}{w-z} \, dw$$



Laurent's Theorem

Theorem (Laurent's Theorem)

Suppose that f is analytic in an annulus $A = \{ z : 0 \le r < |z - z_0| < R \le \infty \}$ with r < R. Then there are complex numbers a_n and b_j such that

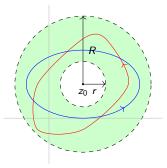
$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{j=1}^{\infty} \frac{b_j}{(z-z_0)^j} \quad \text{for all } z \in A. \qquad (\ddagger)$$

Moreover, if C is any positively oriented simple closed contour in A with z_0 in its interior, then

$$a_n = rac{1}{2\pi i} \int_C rac{f(w)}{(w - z_0)^{n+1}} \, dw$$
 and
 $b_j = rac{1}{2\pi i} \int_C f(w) (w - z_0)^{j-1} \, dw.$

We call (\ddagger) the Laurent series for f in A about z_0 .

The Choice of the Countor C



The Deformation Invariance Theorem allows us to pick any positively oriented closed contour in A to compute the coefficients a_n and b_j in the Laurent series for f in A about z_0 .

Remark

Note that in general, we can't expect

$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

as the hypotheses of the Cauchy Integral Formula are not met. Even worse, f may not even be defined at z_0 let alone analytic there.

Since (‡) is a convergent Laurent series, its convergence is uniform in any subannulus

$$A' = \{ z : r < r' \le |z - z_0| \le R' < R \}.$$

We will use this uniform convergence in the proof in the form of the following lemma.

Lemma

Suppose that f_n is continuous on set D and that $\sum_{n=0}^{\infty} f_n(z)$ converges uniformly to f on D and that Γ is a contour in D. Then f is continuous on D and

$$\int_{\Gamma} f(z) dz = \sum_{n=0}^{\infty} \int_{\Gamma} f_n(z) dz.$$

Theorem

Suppose that

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{j=1}^{\infty} \frac{b_j}{(z - z_0)^j}$$
(†)

converges in $A = \{ z : 0 \le r < |z - z_0| < R \le \infty \}$ with r < R. Then f is analytic in A and (†) is the Laurent series for f in A about z_0 .