# Math 43: Spring 2020 Lecture 20 Part I

Dana P. Williams

Dartmouth College

Wednesday May 13, 2020

## Fun with Geometric Series

Consider  $f(z)=\frac{1}{(z-1)(z-2)}$ . This function is analytic in  $D=\mathbf{C}\setminus\{1,2\}$ . In particular, it is analytic in  $B_1(0)$  and has a MacLaurin series with radius of convergence R=1. We can find it easily using what we know about geometric series. Thus if |z|<1, we have

$$f(z) = \frac{A}{z-1} + \frac{B}{z-2} = -\frac{1}{z-1} + \frac{1}{z-2}$$

$$= \frac{1}{1-z} - \frac{1}{2-z} = \frac{1}{1-z} - \frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}}$$

$$= \sum_{n=0}^{\infty} z^n - \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n$$

$$= \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^{n+1}}\right) z^n.$$

## Analytic in an Annulus

But f is also analytic in the annulus  $A = \{z : 1 < |z| < 2\}$ . Now we play the same game, but with A in mind.

$$f(z) = -\frac{1}{z-1} + \frac{1}{z-2} = -\frac{1}{2-z} - \frac{1}{z-1}$$
$$= -\frac{1}{2} \left( \frac{1}{1 - \frac{z}{2}} \right) - \frac{1}{z} \left( \frac{1}{1 - \frac{1}{z}} \right)$$

which, since 1 < |z| < 2, is

$$= -\frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n - \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n$$
$$\sum_{n=0}^{\infty} \frac{-1}{2^{n+1}} z^n + \sum_{n=1}^{\infty} \frac{-1}{z^n}.$$

Note that in the annulus A, we have written f(z) as the sum of a series of the form  $\sum_{n=0}^{\infty} a_n z^n$ . Return

 $n=-\infty$ 

## Laurent Series

#### Definition

A series of the form  $\sum a_n(z-z_0)^n$  is called a Laurent series about  $z_0$ . We will almost always write this in the form

$$\underbrace{\sum_{n=0}^{\infty} a_n (z - z_0)^n}_{\text{power series bit}} + \underbrace{\sum_{j=1}^{\infty} \frac{b_j}{(z - z_0)^j}}_{\text{singular bit}}$$

where  $b_i = a_{-i}$ . Compare Return

## Power Series to the Rescue

Let R be the radius of convergence of what I cavalierly called the "power series bit" on the previous slide. Hence the first sum converges if  $|z-z_0| < R$ . But if we let  $\xi = \frac{1}{z-z_0}$ , then the "singular bit" is

$$\sum_{j=1}^{\infty} \frac{b_j}{(z-z_0)^j} = \sum_{j=1}^{\infty} b_j \xi^j.$$

If R' is the radius of convergence of the second sum, the the singular bit converges if  $\left|\frac{1}{z-z_0}\right| < R'$ . Equivalently, the singular bit converges if  $|z-z_0| > \frac{1}{R'}$ .

Using this sort of analysis, we can prove the following result about Laurent series.

## General Nonsense

#### Theorem

Suppose that

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{j=1}^{\infty} \frac{b_j}{(z - z_0)^j}$$
 (†)

is a Laurent series about  $z_0$ . Then either (†) converges nowhere or there are  $0 \le r \le R \le \infty$  such that the series converges absolutely if

$$z \in A := \{ z : r < |z - z_0| < R \},$$

and such that the convergence is uniform in every sub-annulus

$$A' = \{ z : r' \le |z - z_0| \le R' \}$$

provided that r < r' < R' < R.

# Picture



Figure: Convergence for a Laurent Series

# Cauchy Again

### Theorem (Cauchy's Integral Formula for a Annulus)

Suppose that f is analytic in  $A=\{z: 0 \le r < |z-z_0| < R \le \infty\}$ . We let  $C_\rho$  denote the positively oriented circle  $|z-z_0|=\rho$ . Then if  $r<\rho_1<\rho_2< R$  and if  $\rho_1<|z-z_0|<\rho_2$ , we have

$$f(z) = \frac{1}{2\pi i} \int_{C_{\rho_2}} \frac{f(w)}{w - z} dw - \frac{1}{2\pi i} \int_{C_{\rho_1}} \frac{f(w)}{w - z} dw$$



## Proof



Suppose that  $\rho_1 < |z - z_0| < \rho_2$ . Then we construct the two contours  $\Gamma_1$  and  $\Gamma_2$  as drawn at right.

The point is that if g is any continuous function on union of the two circles  $C_{\rho_2}$  and  $C_{\rho_1}$ , then because the contributions on the overlapping line segments cancel,

$$\int_{\Gamma_1} g(w) \, dw + \int_{\Gamma_2} g(w) \, dw = \int_{C_{\rho_2}} g(w) \, dw - \int_{C_{\rho_1}} g(w) \, dw. \ (*)$$



## **Proof Continued**

#### Proof.

Since f is analtyic on and inside  $\Gamma_1$  and z is inside of  $\Gamma_1$ , we have

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(w)}{w - z} \, dw$$

by the Cauchy Integral Formula. On the other hand,  $w \mapsto \frac{f(w)}{w-z}$  is analytic on and inside of  $\Gamma_2$ . Thus by the Cauchy Integral Theorem

$$\frac{1}{2\pi i} \int_{\Gamma_2} \frac{f(w)}{w - z} \, dw = 0.$$

## **Finish**

#### Proof.

Hence

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(w)}{w - z} dw + \frac{1}{2\pi i} \int_{\Gamma_2} \frac{f(w)}{w - z} dw$$

which, in view of (\*) (\*), is

$$= \frac{1}{2\pi i} \int_{C_{\rho_2}} \frac{f(w)}{w - z} \, dw - \frac{1}{2\pi i} \int_{C_{\rho_1}} \frac{f(w)}{w - z} \, dw$$

as required.



# **Enough for Now**

#### Remark

After the break, we will make good use of the Cauchy Integral formula for an Annulus.

Time for a Break.