Math 43: Spring 2020 Lecture 20 Part I

Dana P. Williams
Dartmouth College

Wednesday May 13, 2020

Consider $f(z)=\frac{1}{(z-1)(z-2)}$. This function is analytic in $D=\mathbf{C} \backslash\{1,2\}$. In particular, it is analytic in $B_{1}(0)$ and has a MacLaurin series with radius of convergence $R=1$. We can find it easily using what we know about geometric series. Thus if $|z|<1$, we have

$$
\begin{aligned}
f(z) & =\frac{A}{z-1}+\frac{B}{z-2}=-\frac{1}{z-1}+\frac{1}{z-2} \\
& =\frac{1}{1-z}-\frac{1}{2-z}=\frac{1}{1-z}-\frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}} \\
& =\sum_{n=0}^{\infty} z^{n}-\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n} \\
& =\sum_{n=0}^{\infty}\left(1-\frac{1}{2^{n+1}}\right) z^{n} .
\end{aligned}
$$

Analytic in an Annulus

But f is also analytic in the annulus $A=\{z: 1<|z|<2\}$. Now we play the same game, but with A in mind.

$$
\begin{aligned}
f(z) & =-\frac{1}{z-1}+\frac{1}{z-2}=-\frac{1}{2-z}-\frac{1}{z-1} \\
& =-\frac{1}{2}\left(\frac{1}{1-\frac{z}{2}}\right)-\frac{1}{z}\left(\frac{1}{1-\frac{1}{z}}\right)
\end{aligned}
$$

which, since $1<|z|<2$, is

$$
\begin{aligned}
& =-\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}-\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n} \\
& \sum_{n=0}^{\infty} \frac{-1}{2^{n+1}} z^{n}+\sum_{n=1}^{\infty} \frac{-1}{z^{n}}
\end{aligned}
$$

Note that in the annulus A, we have written $f(z)$ as the sum of a series of the form $\sum_{n=-\infty}^{\infty} a_{n} z^{n}$.

Laurent Series

Definition

A series of the form $\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is called a Laurent series about z_{0}. We will almost always write this in the form

$$
\underbrace{\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}}_{\text {power series bit }}+\underbrace{\sum_{j=1}^{\infty} \frac{b_{j}}{\left(z-z_{0}\right)^{j}}}_{\text {singular bit }}
$$

where $b_{j}=a_{-j}$.

```
- Compare > Return
```

Let R be the radius of convergence of what I cavalierly called the "power series bit" on the previous silde. Hence the first sum converges if $\left|z-z_{0}\right|<R$. But if we let $\xi=\frac{1}{z-z_{0}}$, then the "singular bit" is

$$
\sum_{j=1}^{\infty} \frac{b_{j}}{\left(z-z_{0}\right)^{j}}=\sum_{j=1}^{\infty} b_{j} \xi^{j}
$$

If R^{\prime} is the radius of convergence of the second sum, the the singular bit converges if $\left|\frac{1}{z-z_{0}}\right|<R^{\prime}$. Equivalently, the singular bit converges if $\left|z-z_{0}\right|>\frac{1}{R^{\prime}}$.

Using this sort of analysis, we can prove the following result about Laurent series.

General Nonsense

Theorem

Suppose that

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{j=1}^{\infty} \frac{b_{j}}{\left(z-z_{0}\right)^{j}}
$$

is a Laurent series about z_{0}. Then either (\dagger) converges nowhere or there are $0 \leq r \leq R \leq \infty$ such that the series converges absolutely if

$$
z \in A:=\left\{z: r<\left|z-z_{0}\right|<R\right\}
$$

and such that the convergence is uniform in every sub-annulus

$$
A^{\prime}=\left\{z: r^{\prime} \leq\left|z-z_{0}\right| \leq R^{\prime}\right\}
$$

provided that $r<r^{\prime}<R^{\prime}<R$.

Figure: Convergence for a Laurent Series

Cauchy Again

Theorem (Cauchy's Integral Formula for a Annulus)

Suppose that f is analytic in $A=\left\{z: 0 \leq r<\left|z-z_{0}\right|<R \leq \infty\right\}$. We let C_{ρ} denote the positively oriented circle $\left|z-z_{0}\right|=\rho$. Then if $r<\rho_{1}<\rho_{2}<R$ and if $\rho_{1}<\left|z-z_{0}\right|<\rho_{2}$, we have

$$
f(z)=\frac{1}{2 \pi i} \int_{C_{\rho_{2}}} \frac{f(w)}{w-z} d w-\frac{1}{2 \pi i} \int_{C_{\rho_{1}}} \frac{f(w)}{w-z} d w
$$

Suppose that $\rho_{1}<\left|z-z_{0}\right|<\rho_{2}$. Then we construct the two contours Γ_{1} and Γ_{2} as drawn at right.

The point is that if g is any continuous function on union of the two circles $C_{\rho_{2}}$ and $C_{\rho_{1}}$, then because the contributions on the overlapping line segments cancel,

$$
\int_{\Gamma_{1}} g(w) d w+\int_{\Gamma_{2}} g(w) d w=\int_{C_{\rho_{2}}} g(w) d w-\int_{C_{\rho_{1}}} g(w) d w .(*)
$$

Proof Continued

Proof.

Since f is analtyic on and inside Γ_{1} and z is inside of Γ_{1}, we have

$$
f(z)=\frac{1}{2 \pi i} \int_{\Gamma_{1}} \frac{f(w)}{w-z} d w
$$

by the Cauchy Integral Formula. On the other hand, $w \mapsto \frac{f(w)}{w-z}$ is analytic on and inside of Γ_{2}. Thus by the Cauchy Integral Theorem

$$
\frac{1}{2 \pi i} \int_{\Gamma_{2}} \frac{f(w)}{w-z} d w=0
$$

Proof.

Hence

$$
f(z)=\frac{1}{2 \pi i} \int_{\Gamma_{1}} \frac{f(w)}{w-z} d w+\frac{1}{2 \pi i} \int_{\Gamma_{2}} \frac{f(w)}{w-z} d w
$$

which, in view of $(*) \cdot(*)$, is

$$
=\frac{1}{2 \pi i} \int_{C_{\rho_{2}}} \frac{f(w)}{w-z} d w-\frac{1}{2 \pi i} \int_{C_{\rho_{1}}} \frac{f(w)}{w-z} d w
$$

as required.

Enough for Now

Remark

After the break, we will make good use of the Cauchy Integral formula for an Annulus.

Time for a Break.

