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Laurent’s Theorem

Theorem (Laurent’s Theorem)

Suppose that f is analytic in an annulus
A={z:0<r<|z—2| <R<o0} withr < R. Then there are
complex numbers a, and bj such that

o0 . o0 bJ
f(z) = ;an(z —z)" + ; Gy PrelzeA ®
Moreover, if C is any positively oriented simple closed contour in A

with zy in its interior, then

1 f
an = — _flw) dw and
27i Je (w — z9)"tL
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© We call (1) the Laurent series for f in A about zp.

@ The formulas for a, and b; are independent of our choice of C
by the Deformation Invariance Theorem.

© Note that in general, we can't expect

B f(”)(ZO)

dn |
n:

as the hypotheses of the Cauchy Integral Formula are not
met. Even worse, f may not even be defined at z let alone
analytic there.

© Since (1) is a convergent Laurent series, its convergence is
uniform in any subannulus

A={z:r<r’<|z—z|<R <R}

© We will use this uniform convergence in the proof in the form
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Lemma

Suppose that f, is continuous on set D and that Y fo(z)
converges uniformly to f on D and that " is a contour in D. Then
f is continuous on D and

/r f(z)dz = 2 /r fo(2) dz.

|
| \

Proof.

We already know that f must be continuous. By assumption the
partial sums F,(z) = Y }_, fk(z) converge uniformly to f(z) for all
z € D. Therefore

/rf(z) dz = IiT/an(z) dz:lirr’nkzn:o/rfk(z) dz
:g/rfk(z) dz. O

v
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Sketch of the Proof

Since the proof is very similar to that of Taylor's Theorem, | am
only going to sketch the details. If z € A, then there are

r < p1 < p2 < R such that p; < |z — z| < p2. Then by Cauchy's
Integral Formula for an annulus,

f(z) = ! /C f(w) dw — ! f(w) dw.

2mi w—z 2ni Je w—2z
2 P1

Now just as in the proof of Taylor's Theorem, if w € C,,, then

f(w) — f(w) 1 _ f(w) 1_
w—z w—2z0—(z—2) w-—2 1—%2

which, since [Z=2| < 1if w € Gy, is

S (2 2)" (W) (z = )"
=1l );)(W—Zo)”“ _nz;) (w —z)mtt
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Getting the Power Series Bit

Using this formula,

1 f( f(w)(z—z)"
— d
2ri Je,, w— 27r// Z (w—z)"L v

which, since our lemma applies, is

which, by our formula for the a,, is

oo
= Z an(z — z9)"
n=0
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Now if w € C,,, we no longer have |Z=2 ‘ < 1. In fact, now

=2 Zz%{ > 1. So we work with the reC|proca| If we C,,, then
fw)  fw) f(w) __fw) 1
w—z z-w  (z—2z)—(w—2z) z-201- 72

= (w— z)
= —f(Z)nZ_O (Z — ZO)n+1
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Hence,

1 f( / Z —ZO -1
2mi Cplw—z C (z—z)

PL §

which, by our lemma, is

[e o]

1 Cyergy
22/ w)(w — z) di(z—zo)f

which, given our formula for the b;, is

[e o]

bj
N Z (z—z)

Jj=1

This completes our sketch of the proof.
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Uniqueness

Suppose that

f(z):ZO z—zon+z; z—zo)f (1)
n= J

convergesin A={z:0<r<|z—z|<R<oco} withr<R.
Then f is analytic in A and () is the Laurent series for f in A
about z.

The proof is similar to the one for power series. We will skip the
details. [

Dana P. Williams Math 43: Spring 2020 Lecture 20 Part Il



Examples

We hardly ever use the formulas for the coefficients a, and b; for a
Laurent series.

Example

m.
S
N

Let f(z) = : (5 ) Then f is analytic in the annulus A= {z:0 < |z| }.
z

Find the Laurent series.

If z=£0, then

1 23 Z°

-5 E e

(2) z5 3+5'+
111 2
*?‘f*ﬁ 7|+
1 2n
T 622+Z "o

By the previous theorem, this must be the Laurent series for f about 0. [J
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Let g(z) = 22 ez. Find the Laurent series about 0.

1 1 1
2
Y R R B )
g(2) Z<+z+2!-z2+3!-z3+
e NP
B 2 6z
 R— 1
2
- - S O
z +z+2+;(j+2)!zj
J:
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We will use Laurent series down the road to investigate the sorts of
singularities that analytic functions can have.

That is enough for today.

Dana P. Williams Math 43: Spring 2020 Lecture 20 Part Il



