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Today

1 We should be recording!

2 You should have your graded exam back.

3 I emailed solutions out as well as information about your
standing in the course.

4 You can find a hist-o-gram of the classes scores on the exam
on the assignments page.

5 I will have office hours today 1:30 - 2:30 as well as my regular
office hours on Tuesday if you want to talk about the course
prior to the drop deadline on Wednesday.

6 I am also happy to talk about the exam anytime if you have
questions or concerns.
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Zeros

Definition

Suppose that f is analytic at z0 and that f (z0) = 0. Then we say
that z0 is a zero of order m ≥ 1 for f if

0 = f (z0) = f ′(z0) = · · · = f (m−1)(z0) and f (m)(z0) 6= 0.

If f (m)(z0) = 0 for all n ≥ 0, then we say that z0 is a zero of
infinite order.

Theorem

Suppose that f is analytic in a domain D. If f has a zero of
infinite order in D, then f is identically zero in D.
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Isolated Zeros

Theorem

Suppose that f is a non-constant analytic function in a domain D.
If z0 ∈ D is a zero for f , then z0 has finite order m ≥ 1, and there
is an analytic function g on D such that g(z0) 6= 0 and such that

f (z) = (z − z0)mg(z) for all z ∈ D.

Corollary

If f is a non-constant analytic function on a domain D, then the
zeros of f are isolated. That is, if f (z0) = 0 for some z0 ∈ D, then
there is a δ > 0 such that f (z) 6= 0 if
z ∈ B ′δ(z0) = { z : 0 < |z − z0| < δ }.
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And Now Singularities

Definition

If f is analytic in B ′R(z0) for some R > 0, then we say that f has
an isolated singularity at z0

Remark

If f has an isolated singularity at z0, then for some R > 0, f is
analytic in the degenerate annulus A = { z : 0 < |z − z0| < R }.
Hence f has a Laurent series in A about z0:

f (z) =
∞∑
n=0

an(z − z0)n +
∞∑
j=1

bj
(z − z0)j

(‡)

for all z ∈ A. We know that the coefficients an and bj appearing in
(‡) depend only on f and z0 and can be computed with respect to
any positively oriented simple close contour in B ′R(z0) containing
z0 in its interior. Hence we call (‡) the Laurent series for f at z0.
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Classification of Singularities

Definition

Suppose that f has an isolated singularity at z0 with Laurent series

f (z) =
∞∑
n=0

an(z − z0)n +
∞∑
j=1

bj
(z − z0)j

1 If bj = 0 for all j ≥ 1, then we call z0 a removable singularity.

2 If bj = 0 for all j > m and bm 6= 0, then we call z0 a pole of
order m.

3 If bj 6= 0 for infinitely many j , then we call z0 as essential
singularity.
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Removable Singularities

Theorem (Classification of Removable Singularities)

Suppose that f has an isolated singularity at z0. Then the
following are equivalent.

1 f has a removable singularity at z0.

2 We can define, or if necessary re-define, f at z0 so that f is
analytic at z0. (Colloquially, we can “remove” the singularity.)

3 The lim
z→z0

f (z) exists.

4 There is a M > 0 and a r > 0 such that

|f (z)| ≤ M for all z ∈ B ′r (z0).
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And Now Poles get their Turn

Theorem

Suppose that D is domain containing z0 and that f is analytic in
D \ {z0} so that f has an isolated singularity at z0. Then f has a
pole of order m ≥ 1 at z0 if and only if there is an analytic
function g on D such that g(z0) 6= 0 and

f (z) =
g(z)

(z − z0)m
for all z ∈ D \ {z0}.

Corollary

If f has a pole of order m ≥ 1 at z0, then

lim
z→z0

∣∣(z − z0)k f (z)
∣∣ =∞

whenever 0 ≤ k < m.
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Characterizing Poles

Theorem

Suppose that f has an isolated singularity at z0. Then f has a pole
at z0 if and only if

lim
z→z0

|f (z)| =∞.
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Essential Singularities

Corollary

Suppose that f has an isolated singularity at z0. Then f has an
essential singularity at z0 if and only if |f (z)| is not bounded near
z0 and limz→z0 |f (z)| 6=∞.
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Dense Sets

Definition

A subset D ⊂ C is dense in C if for all w ∈ C and all ε > 0 we
have D ∩ Bε(w) 6= ∅.

Remark

D is dense in C if and only if given w ∈ C there is a sequence
(dn) ⊂ D such that dn → w .

Example

1 R = { r + is : r , s ∈ Q } is dense in C.

2 C \ R is also dense in C.

3 If F ⊂ C is a finite set, then C \ F is dense in C.
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The Midterm is Cool

Lemma (Proved on Midterm)

If f is a non-constant entire function, then f has dense range.
That is, f (C) is dense in C.
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Casorati-Weierstrass

Theorem (Casorati-Weierstrass)

Suppose that f has an essential singularity at z0. Then for all
ε > 0, the image, f

(
B ′ε(z0)

)
, of the deleted ε-ball about z0 is dense

in C.

z0

ε

f

Dana P. Williams Math 43: Spring 2020 Lecture 21 & 22 Summary



Forbidden Friut

I am stating these for the sake of intellectual curiosity. They are
not fair game in this course.

Theorem (Picard’s Great Theorem)

If f has an essential singularity at z0, then with possibly one
exception, f assume every complex value infinitely often in any
deleted neighborhood B ′ε(z0) of z0.

Remark

You can verify this for f (z) = exp(1z ) near z0 = 0. Note that the
exceptional value here is 0.

Theorem (Picard’s Little Theorem)

If the range of an entire function omits more than one point, then
it is constant.
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