Math 43: Spring 2020 Lecture 21 & 22 Summary

Dana P. Williams

Dartmouth College

Friday May 15, 2020

Today

- We should be recording!
- 2 You should have your graded exam back.
- I emailed solutions out as well as information about your standing in the course.
- You can find a hist-o-gram of the classes scores on the exam on the assignments page.
- I will have office hours today 1:30 2:30 as well as my regular office hours on Tuesday if you want to talk about the course prior to the drop deadline on Wednesday.
- I am also happy to talk about the exam anytime if you have questions or concerns.

Definition

Suppose that f is analytic at z_0 and that $f(z_0) = 0$. Then we say that z_0 is a zero of order $m \ge 1$ for f if

$$0 = f(z_0) = f'(z_0) = \cdots = f^{(m-1)}(z_0)$$
 and $f^{(m)}(z_0) \neq 0$.

If $f^{(m)}(z_0) = 0$ for all $n \ge 0$, then we say that z_0 is a zero of infinite order.

Theorem

Suppose that f is analytic in a domain D. If f has a zero of infinite order in D, then f is identically zero in D.

Theorem

Suppose that f is a non-constant analytic function in a domain D. If $z_0 \in D$ is a zero for f, then z_0 has finite order $m \ge 1$, and there is an analytic function g on D such that $g(z_0) \neq 0$ and such that

$$f(z) = (z - z_0)^m g(z)$$
 for all $z \in D$.

Corollary

If f is a non-constant analytic function on a domain D, then the zeros of f are isolated. That is, if $f(z_0) = 0$ for some $z_0 \in D$, then there is a $\delta > 0$ such that $f(z) \neq 0$ if $z \in B'_{\delta}(z_0) = \{ z : 0 < |z - z_0| < \delta \}.$

And Now Singularities

Definition

If f is analytic in $B'_R(z_0)$ for some R > 0, then we say that f has an isolated singularity at z_0

Remark

If f has an isolated singularity at z_0 , then for some R > 0, f is analytic in the degenerate annulus $A = \{ z : 0 < |z - z_0| < R \}$. Hence f has a Laurent series in A about z_0 :

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{j=1}^{\infty} \frac{b_j}{(z - z_0)^j} \qquad (\ddagger)$$

for all $z \in A$. We know that the coefficients a_n and b_j appearing in (‡) depend only on f and z_0 and can be computed with respect to any positively oriented simple close contour in $B'_R(z_0)$ containing z_0 in its interior. Hence we call (‡) the Laurent series for f at z_0 .

Definition

Suppose that f has an isolated singularity at z_0 with Laurent series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{j=1}^{\infty} \frac{b_j}{(z - z_0)^j}$$

• If $b_j = 0$ for all $j \ge 1$, then we call z_0 a removable singularity.

- If $b_j = 0$ for all j > m and $b_m \neq 0$, then we call z_0 a pole of order m.
- If b_j ≠ 0 for infinitely many j, then we call z₀ as essential singularity.

Theorem (Classification of Removable Singularities)

Suppose that f has an isolated singularity at z_0 . Then the following are equivalent.

- f has a removable singularity at z_0 .
- We can define, or if necessary re-define, f at z₀ so that f is analytic at z₀. (Colloquially, we can "remove" the singularity.)

• The
$$\lim_{z \to z_0} f(z)$$
 exists.

There is a M > 0 and a r > 0 such that

 $|f(z)| \leq M$ for all $z \in B'_r(z_0)$.

Theorem

Suppose that D is domain containing z_0 and that f is analytic in $D \setminus \{z_0\}$ so that f has an isolated singularity at z_0 . Then f has a pole of order $m \ge 1$ at z_0 if and only if there is an analytic function g on D such that $g(z_0) \ne 0$ and

$$f(z) = rac{g(z)}{(z-z_0)^m}$$
 for all $z \in D \setminus \{z_0\}.$

Corollary

If f has a pole of order $m \ge 1$ at z_0 , then

$$\lim_{z\to z_0} \left| (z-z_0)^k f(z) \right| = \infty$$

whenever $0 \le k < m$.

Theorem

Suppose that f has an isolated singularity at z_0 . Then f has a pole at z_0 if and only if

$$\lim_{z\to z_0}|f(z)|=\infty.$$

Corollary

Suppose that f has an isolated singularity at z_0 . Then f has an essential singularity at z_0 if and only if |f(z)| is not bounded near z_0 and $\lim_{z\to z_0} |f(z)| \neq \infty$.

Definition

A subset $D \subset C$ is dense in C if for all $w \in C$ and all $\epsilon > 0$ we have $D \cap B_{\epsilon}(w) \neq \emptyset$.

Remark

D is dense in **C** if and only if given $w \in \mathbf{C}$ there is a sequence $(d_n) \subset D$ such that $d_n \to w$.

Example

D
$$R = \{ r + is : r, s \in \mathbf{Q} \}$$
 is dense in **C**.

2 $\mathbf{C} \setminus R$ is also dense in \mathbf{C} .

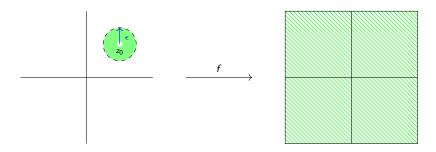
3 If $F \subset \mathbf{C}$ is a finite set, then $\mathbf{C} \setminus F$ is dense in \mathbf{C} .

Lemma (Proved on Midterm)

If f is a non-constant entire function, then f has dense range. That is, $f(\mathbf{C})$ is dense in \mathbf{C} .

Theorem (Casorati-Weierstrass)

Suppose that f has an essential singularity at z_0 . Then for all $\epsilon > 0$, the image, $f(B'_{\epsilon}(z_0))$, of the deleted ϵ -ball about z_0 is dense in **C**.



I am stating these for the sake of intellectual curiosity. They are not fair game in this course.

Theorem (Picard's Great Theorem)

If f has an essential singularity at z_0 , then with possibly one exception, f assume every complex value infinitely often in any deleted neighborhood $B'_{\epsilon}(z_0)$ of z_0 .

Remark

You can verify this for $f(z) = \exp(\frac{1}{z})$ near $z_0 = 0$. Note that the exceptional value here is 0.

Theorem (Picard's Little Theorem)

If the range of an entire function omits more than one point, then it is constant.