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Characterizing Poles

Corollary (Before the Break)

If f has a pole of order m ≥ 1 at z0, then

lim
z→z0

∣∣(z − z0)k f (z)
∣∣ =∞

whenever 0 ≤ k < m.

Theorem

Suppose that f has an isolated singularity at z0. Then f has a pole
at z0 if and only if

lim
z→z0

|f (z)| =∞.

Proof.

If f has a pole at z0, then limz→z0 |f (z)| =∞ by the Corollary
with k = 0.
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The Converse

Proof.

Now suppose that limz→z0 |f (z)| =∞. Let

g(z) =
1

f (z)
.

Then g has an isolated singularity at z0. Also, lim
z→z0

g(z) = 0.

Hence z0 is a removable singularity for g and

h(z) =

{
g(z) if z 6= z0, and

0 if z = z0.

is necessarily analytic at z0! Moreover, since g(z) is not zero near
z0, h is not constant. Hence z0 has finite order m ≥ 1.
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Finish

Proof.

Since h has a zero of order m ≥ 1 at z0, we have

h(z) = (z − z0)mp(z)

where p is analytic at z0 and p(z0) 6= 0. But now if z 6= z0

f (z) =
1

h(z)
=

1

(z − z0)m
· 1

p(z)
=

r(z)

(z − z0)m
,

where r is analytic at z0 and r(z0) = 1
p(z0)

6= 0. Hence f has a pole
of order m at z0 in view of our previous result.

Dana P. Williams Math 43: Spring 2020 Lecture 22 Part II



Essential Singularities

Corollary

Suppose that f has an isolated singularity at z0. Then f has an
essential singularity at z0 if and only if |f (z)| is not bounded near
z0 and limz→z0 |f (z)| 6=∞.

Proof.

By default. This is the only case left. We know that z0 is
removable if and only if |f (z)| is bounded near z0, and we know
that z0 is a pole if and only if limz→z0 |f (z)| =∞.
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Wait, What’s Left?

Example

Consider f (z) = e
1
z = exp

(
1
z

)
.

Let x ∈ R.

Then |f
(
1
ix

)
| = 1 for all x 6= 0. Therefore limz→0 |f (z)| 6=∞.

On the other hand for real x , limx↘0 |e
1
x | =∞ and |f (z)| is not

bounded near 0.

This means that 0 is an essential singularity for f . Of course, we
knew this from the start because we can write down the Laurent

series for f : f (z) = 1 +
∞∑
j=1

1

j! · z j
.
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Dense Sets

Definition

A subset D ⊂ C is dense in C if for all w ∈ C and all ε > 0 we
have D ∩ Bε(w) 6= ∅.

Remark

D is dense in C if and only if given w ∈ C there is a sequence
(dn) ⊂ D such that dn → w .

Example

1 R = { r + is : r , s ∈ Q } is dense in C.

2 C \ R is also dense in C.

3 If F ⊂ C is a finite set, then C \ F is dense in C.
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The Midterm is Cool

Lemma

If f is a non-constant entire function, then f has dense range.
That is, f (C) is dense in C.

Proved on the Midterm.

You proved this on the exam. If f (C) is not dense, then there is a
w ∈ C and an ε > 0 such that f (C) ∩ Bε(w) = ∅. In other words,
|f (z)− w | ≥ ε for all z . Then g(z) = 1

f (z)−w is entire and

|g(z)| ≤ 1
ε . Then g is constant. If g(z) = c for all z , then c 6= 0

and f (z) = 1
c + w is constant.
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Casorati-Weierstrass

Theorem (Casorati-Weierstrass)

Suppose that f has an essential singularity at z0. Then for all
ε > 0, the image, f

(
B ′ε(z0)

)
, of the deleted ε-ball about z0 is dense

in C.

z0

ε

f
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The Proof

Proof.

Suppose to the contrary that there is a ε > 0 such that f
(
B ′ε(z0)

)
is not dense. Then there is a w ∈ C and a r > 0 such that

|f (z)− w | ≥ r for all z ∈ B ′ε(z0).

Let g(z) =
1

f (z)− w
. Then g has an isolated singularity at z0 and

|g(z)| ≤ 1

r
for all z ∈ B ′ε(z0).

Hence g has a removable singularity at z0!
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One More Case

Proof.

Since z0 is a removable singularity for g , there is a L ∈ C such that
limz→z0 g(z) = L. If L 6= 0, then

lim
z→z0

f (z) = lim
z→z0

1

g(z)
+ w =

1

L
+ w .

But then f would have a removable singularity at z0 which
contradicts our hypothesis. But if L = 0, then

lim
z→z0

|f (z)| = lim
z→z0

∣∣∣ 1

g(z)
+ w

∣∣∣ =∞.

Then f would have a pole at z0. This is also contradicts our
hypothesis. Hence f

(
B ′ε(z0)

)
must be dense as claimed.
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Forbidden Friut

I am stating these for the sake of intellectual curiosity. They are
not fair game in this course.

Theorem (Picard’s Great Theorem)

If f has an essential singularity at z0, then with possibly one
exception, f assume every complex value infinitely often in any
deleted neighborhood B ′ε(z0) of z0.

Remark

You can verify this for f (z) = exp(1z ) near z0 = 0. Note that the
exceptional value here is 0.

Theorem (Picard’s Little Theorem)

If the range of an entire function omits more than one point, then
it is constant.
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Break Time

Remark

There is a lot in §5.6. Note that we have covered some material
not in the text!

That is definitely enough for today!!
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