Math 43: Spring 2020 Lecture 23 Part I

Dana P. Williams
Dartmouth College

Wednesday May 20, 2020

Residues

If f has an isolated singularity at z_{0}, then we know that f has a Laurent series

$$
f(z)=\sum_{n=0}^{a_{n}} a_{n}\left(z-z_{0}\right)^{n}+\sum_{j=1}^{\infty} \frac{b_{j}}{\left(z-z_{0}\right)^{j}}
$$

which is valid is some deleted neighborhood $B_{R}^{\prime}\left(z_{0}\right)$. While we have handy formulas for all the coefficients, b_{1} is special. If Γ is any simple closed contour in $B_{R}^{\prime}\left(z_{0}\right)$ with z_{0} in its interior, then

$$
\int_{\Gamma} f(z) d z=2 \pi i \cdot b_{1}
$$

Definition

If f has an isolated singularity at z_{0} with Laurent series given by (\dagger), then we call b_{1} the residue of f at z_{0}, and we write

$$
b_{1}:=\operatorname{Res}\left(f ; z_{0}\right)
$$

Example

Example

Compute $I=\int_{|z|=1} z^{2} \exp \left(\frac{1}{z}\right) d z$. (Note: writing $e^{\frac{1}{z}}$ just doesn't cut it on slides; hence I may over use exp a bit.)

Solution.

As usual in this situation, we assume $|z|=1$ is positively oriented unless otherwise told. Now

$$
\begin{aligned}
z^{2} \exp \left(\frac{1}{z}\right) & =z^{2}\left(1+\frac{1}{z}+\frac{1}{2 z^{2}}+\frac{1}{6 z^{3}}+\cdots\right) \\
& =z^{2}+z+\frac{1}{2}+\frac{1}{6 z}+\cdots
\end{aligned}
$$

Thus $I=2 \pi i \cdot \operatorname{Res}\left(z^{2} \exp \left(\frac{1}{z}\right) ; 0\right)=2 \pi i \cdot \frac{1}{6}=\frac{\pi i}{3}$.

Low Hanging Fruit

Remark

If f has a removable singularity at z_{0}, then $\operatorname{Res}\left(f ; z_{0}\right)=0$.

Remark (Simple Poles)

Suppose that f has a simple pole at z_{0} —a simple pole is a pole of order 1. Then near z_{0},

$$
\begin{aligned}
f(z) & =\frac{b_{1}}{z-z_{0}}+a_{0}+a_{2}\left(z-z_{0}\right)+\cdots \\
& =\frac{b_{1}}{z-z_{0}}+g(z)
\end{aligned}
$$

where g is analytic at z_{0}. In particular,

$$
\left(z-z_{0}\right) f(z)=b_{1}+\left(z-z_{0}\right) g(z)
$$

in a deleted neighborhood of z_{0}.

Residues at Simple Poles

Lemma

If f has a simple pole at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

Conversely, if f has an isolated singularity at z_{0} and

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=L \neq 0
$$

then f has a simple pole at z_{0} and $L=\operatorname{Res}\left(f ; z_{0}\right)$.

Proof.

The first statement follows immediately from (\ddagger) on the

```
p previous page
```


Proof.

For the converse, assume $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=L \neq 0$. Then

$$
\lim _{z \rightarrow z_{0}}|f(z)|=\lim _{z \rightarrow z_{0}} \frac{\left|\left(z-z_{0}\right) f(z)\right|}{\left|z-z_{0}\right|}=\infty
$$

since the numerator tends to $|L| \neq 0$. Thus f has a pole at z_{0} of order $m \geq 1$. But if $m \geq 2$, then $\lim _{z \rightarrow z_{0}}\left|\left(z-z_{0}\right) f(z)\right|=\infty$!. Since this limit is finite, z_{0} is a simple pole.

Examples

Example

Consider $f(z)=\frac{e^{z}}{z(z+2)}$.
Since $g(z)=e^{z} /(z+2)$ is analtyic and nonzero at 0 , and since $f(z)=g(z) / z$, it follows that f has a simple pole at 0 . Hence

$$
\operatorname{Res}(f ; 0)=\lim _{z \rightarrow 0}(z-0) f(z)=\lim _{z \rightarrow 0} \frac{e^{z}}{z+2}=\frac{1}{2}
$$

Of course, since the above limit is nonzero, that also implies that 0 is a simple pole for f. Similarly,

$$
\operatorname{Res}(f ;-2)=\lim _{z \rightarrow-2}(z+2) f(z)=\lim _{z \rightarrow-2} \frac{e^{z}}{z}=-\frac{1}{2} \cdot e^{-2}
$$

Break Time

Remark

After the break,

Time for a Break.

