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The Simple Pole Lemma

Our next result makes it easy to compute residues in certain cases.
You should expect to use it regularly!

Theorem (The Simple Pole Lemma)

Suppose that h and g are analytic at z0. Suppose also that h has a
simple zero at z0 while g(z0) 6= 0. Then

f (z) =
g(z)

h(z)

has a simple pole at z0 and

Res(f ; z0) =
g(z0)

h′(z0)
. (†)
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The Proof

Proof.

Since h has a simple zero at z0, we have h′(z0) 6= 0. Hence at least
the right-hand side of (†) is well-defined. Moreover,

lim
z→z0

(z − z0)f (z) = lim
z→z0

(z − z0)g(z)

h(z)

= lim
z→z0

g(z)
h(z)−h(z0)

z−z0

=
g(z0)

h′(z0)

since g is continuous at z0 and h′(z0) 6= 0.
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Example

Example

Let f (z) =
z2

z4 + 1
. Let w = e i

π
4 = 1√

2
+ i 1√

2
. Find Res(f ;w).

Solution.

Notice that the Simple Pole Lemma applies! Hence

Res(f ; z) =
z2

4z3

∣∣∣
z=w

=
1

4w
=

w

4

=
1

4

( 1√
2
− i

1√
2

)
.
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Non Simple Poles

Example

Let f (z) =
ez

(z2 + 1)2
. Compute Res(f ; i).

Notice that

f (z) =

ez

(z+i)2

(z − i)2
.

Hence i is a pole of order 2 for f ! This is because
g(z) = ez/(z + i)2 is analytic and nonzero at i ! But how can we
computer the residue at poles of higher order when the Laurent
series is hard (or even impossible) to compute?
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Back to our Old Tricks

Let’s look at the general case where f has a pole of order 2 at z0.
Then

f (z) =
b2

(z − z0)2
+

b1

z − z0
+ g(z)

where g is analytic at z0. Then

(z − z0)2f (z) = b2 + b1(z − z0) + (z − z0)2g(z).

Therefore

d

dz

[
(z − z0)2f (z)

]
= b1 + 2(z − z0)g(z) + (z − z0)2g ′(z).

Now we see that

Res(f ; z0) = b1 = lim
z→z0

d

dz

[
(z − z0)2f (z)

]
.
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Back to our Example

Recall that we started by asking for Res(f ; i) where

f (z) =
ez

(z2 + 1)2
. Based on the previous slide,

Res(f ; i) = lim
z→i

d

dz

[
(z − i)2 ez

(z2 + 1)2

]
= lim

z→i

d

dz

[ ez

(z + i)2

]
= lim

z→i

ez(z + i)2 − 2(z + i)ez

(z + i)4

= lim
z→i

ez(z + i)− 2ez

(z + i)3

=
e i (2i − 2)

−8i
=

e i (i − 1)

−4i
= e i = −e i 1 + i

4
.
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The General Case

Just as with computing partial fraction decompositions, the authors
of our text provide us with a handy—and easy to mess-up—general
formula. While I feel honor bound to report its existence, it is
generally safer to work it out if and when you need it.

Lemma

If f has a pole of order m ≥ 1 at z0, then

Res(f ; z0) = lim
z→z0

1

(m − 1)!

dm−1

dzm−1

[
(z − z0)mf (z)

]
.
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The Cauchy Residue Theorem

Theorem (Cauchy Residue Theorem)

Suppose that f is analytic on and inside a positively oriented
simple closed contour Γ except for isolated singularities z1, . . . , zn
inside of Γ. Then ∫

Γ
f (z) dz = 2πi

n∑
k=1

Res(f ; zk).
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Proof

Γ

z1

z2

z3

zn

C1

C2

Sketch of the Proof.

Let D be the interior of Γ. We assume
that we can continuously deform Γ in
D \ { z1, . . . , zn } to the union of n
postively oriented circles Ck centered at
the singularities zk together with
canceling line segments. Then by the
Deformation Invariance Theorem,∫

Γ
f (z) dz =

n∑
k=1

∫
Ck

f (z) dz

=
n∑

k=1

2πi Res(f ; zk).
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Example

Example

Evaluate I =

∫
|z|=2

ez

z2 + 1
dz .

Solution.

As always, without any indication to the contrary, we are supposed
to assume that |z | = 2 is positively oriented. Then by the Cauchy
Residue Theorem,

I = 2πi
(
Res(f ; i) + Res(f ;−i)

)
= 2πi

(
Res(i) + Res(−i)

)
.

By the Simple Pole Lemma, Res(i) = e i

2i and Res(−i) = e−i

−2i .
Hence

I = 2πi
(e i − e−i

2i

)
= 2πi · sin(1).
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Break Time

Remark

Well, if you like computing contour integrals, that last
computation was pretty neat! Now I have to convince you that
there is a good reason to compute a contour integral—other than
doing well on Math 43 exams.

But we’ll deal with that in the coming week or so. Now we should
stand down for today.
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