Math 43: Spring 2020 Lecture 23 Part II

Dana P. Williams
Dartmouth College

Wednesday May 20, 2020

The Simple Pole Lemma

Our next result makes it easy to compute residues in certain cases. You should expect to use it regularly!

Theorem (The Simple Pole Lemma)

Suppose that h and g are analytic at z_{0}. Suppose also that h has a simple zero at z_{0} while $g\left(z_{0}\right) \neq 0$. Then

$$
f(z)=\frac{g(z)}{h(z)}
$$

has a simple pole at z_{0} and

$$
\operatorname{Res}\left(f ; z_{0}\right)=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}
$$

Proof.

Since h has a simple zero at z_{0}, we have $h^{\prime}\left(z_{0}\right) \neq 0$. Hence at least the right-hand side of (\dagger) is well-defined. Moreover,

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z) & =\lim _{z \rightarrow z_{0}} \frac{\left(z-z_{0}\right) g(z)}{h(z)} \\
& =\lim _{z \rightarrow z_{0}} \frac{g(z)}{\frac{h(z)-h\left(z_{0}\right)}{z-z_{0}}} \\
& =\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}
\end{aligned}
$$

since g is continuous at z_{0} and $h^{\prime}\left(z_{0}\right) \neq 0$.

Example

Example

Let $f(z)=\frac{z^{2}}{z^{4}+1}$. Let $w=e^{i \frac{\pi}{4}}=\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}$. Find $\operatorname{Res}(f ; w)$.

Solution.

Notice that the Simple Pole Lemma applies! Hence

$$
\begin{aligned}
\operatorname{Res}(f ; z) & =\left.\frac{z^{2}}{4 z^{3}}\right|_{z=w} \\
& =\frac{1}{4 w}=\frac{\bar{w}}{4} \\
& =\frac{1}{4}\left(\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right) .
\end{aligned}
$$

Non Simple Poles

Example

Let $f(z)=\frac{e^{z}}{\left(z^{2}+1\right)^{2}}$. Compute $\operatorname{Res}(f ; i)$.
Notice that

$$
f(z)=\frac{\frac{e^{z}}{(z+i)^{2}}}{(z-i)^{2}}
$$

Hence i is a pole of order 2 for f ! This is because $g(z)=e^{z} /(z+i)^{2}$ is analytic and nonzero at i ! But how can we computer the residue at poles of higher order when the Laurent series is hard (or even impossible) to compute?

Back to our Old Tricks

Let's look at the general case where f has a pole of order 2 at z_{0}. Then

$$
f(z)=\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\frac{b_{1}}{z-z_{0}}+g(z)
$$

where g is analytic at z_{0}. Then

$$
\left(z-z_{0}\right)^{2} f(z)=b_{2}+b_{1}\left(z-z_{0}\right)+\left(z-z_{0}\right)^{2} g(z)
$$

Therefore

$$
\frac{d}{d z}\left[\left(z-z_{0}\right)^{2} f(z)\right]=b_{1}+2\left(z-z_{0}\right) g(z)+\left(z-z_{0}\right)^{2} g^{\prime}(z)
$$

Now we see that

$$
\operatorname{Res}\left(f ; z_{0}\right)=b_{1}=\lim _{z \rightarrow z_{0}} \frac{d}{d z}\left[\left(z-z_{0}\right)^{2} f(z)\right] .
$$

Back to our Example

Recall that we started by asking for $\operatorname{Res}(f ; i)$ where $f(z)=\frac{e^{z}}{\left(z^{2}+1\right)^{2}}$. Based on the previous slide,

$$
\begin{aligned}
\operatorname{Res}(f ; i) & =\lim _{z \rightarrow i} \frac{d}{d z}\left[(z-i)^{2} \frac{e^{z}}{\left(z^{2}+1\right)^{2}}\right]=\lim _{z \rightarrow i} \frac{d}{d z}\left[\frac{e^{z}}{(z+i)^{2}}\right] \\
& =\lim _{z \rightarrow i} \frac{e^{z}(z+i)^{2}-2(z+i) e^{z}}{(z+i)^{4}} \\
& =\lim _{z \rightarrow i} \frac{e^{z}(z+i)-2 e^{z}}{(z+i)^{3}} \\
& =\frac{e^{i}(2 i-2)}{-8 i}=\frac{e^{i}(i-1)}{-4 i}=e^{i}=-e^{i} \frac{1+i}{4} .
\end{aligned}
$$

Just as with computing partial fraction decompositions, the authors of our text provide us with a handy-and easy to mess-up-general formula. While I feel honor bound to report its existence, it is generally safer to work it out if and when you need it.

Lemma

If f has a pole of order $m \geq 1$ at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]
$$

The Cauchy Residue Theorem

Theorem (Cauchy Residue Theorem)

Suppose that f is analytic on and inside a positively oriented simple closed contour Γ except for isolated singularities z_{1}, \ldots, z_{n} inside of Γ. Then

$$
\int_{\Gamma} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f ; z_{k}\right)
$$

Proof

Sketch of the Proof.

Let D be the interior of Γ. We assume that we can continuously deform Γ in $D \backslash\left\{z_{1}, \ldots, z_{n}\right\}$ to the union of n postively oriented circles C_{k} centered at the singularities z_{k} together with canceling line segments. Then by the Deformation Invariance Theorem,

$$
\begin{aligned}
\int_{\Gamma} f(z) d z & =\sum_{k=1}^{n} \int_{C_{k}} f(z) d z \\
& =\sum_{k=1}^{n} 2 \pi i \operatorname{Res}\left(f ; z_{k}\right)
\end{aligned}
$$

Example

Example

Evaluate $I=\int_{|z|=2} \frac{e^{z}}{z^{2}+1} d z$.

Solution.

As always, without any indication to the contrary, we are supposed to assume that $|z|=2$ is positively oriented. Then by the Cauchy Residue Theorem,

$$
I=2 \pi i(\operatorname{Res}(f ; i)+\operatorname{Res}(f ;-i))=2 \pi i(\operatorname{Res}(i)+\operatorname{Res}(-i))
$$

By the Simple Pole Lemma, $\operatorname{Res}(i)=\frac{e^{i}}{2 i}$ and $\operatorname{Res}(-i)=\frac{e^{-i}}{-2 i}$. Hence

$$
I=2 \pi i\left(\frac{e^{i}-e^{-i}}{2 i}\right)=2 \pi i \cdot \sin (1)
$$

Break Time

Remark

Well, if you like computing contour integrals, that last computation was pretty neat! Now I have to convince you that there is a good reason to compute a contour integral-other than doing well on Math 43 exams.

But we'll deal with that in the coming week or so. Now we should stand down for today.

