Math 43: Spring 2020 Lecture 24 Part II

Dana P. Williams
Dartmouth College

Friday May 22, 2020

Improper Integrals

Example

Compute $I=\int_{0}^{\infty} \frac{1}{x^{4}+1} d x:=\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{1}{x^{4}+1} d x$.

Remark

Again, we technically have the tools to evaluate this. We could form a partial fraction decomposition

$$
\frac{1}{x^{4}+1}=\frac{x-\sqrt{2}}{2 \sqrt{2}\left(-x^{2}+\sqrt{2} x-1\right)}+\frac{x+\sqrt{2}}{2 \sqrt{2}\left(x^{2}+\sqrt{2} x+1\right)}
$$

and waste away hours with trig substitutions to compute an antiderivative

$$
\begin{aligned}
\frac{1}{4 \sqrt{2}}\left[-\log \left(x^{2}-\sqrt{2} x+1\right)\right. & +\log \left(x^{2}+\sqrt{2} x+1\right) \\
& \left.-2 \tan ^{-1}(1-\sqrt{2} x)+2 \tan ^{-1}(\sqrt{2} x+1)\right]
\end{aligned}
$$

and then take the limit. Yuck!

A Complex Method

In order to form a useful contour integral, we need to observe that by symmetry we also have

$$
I=\lim _{R \rightarrow \infty} \int_{-R}^{0} \frac{1}{x^{4}+1} d x
$$

Therefore

$$
I=\frac{1}{2} \lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{1}{x^{4}+1} d x
$$

We can even turn this into a contour integral problem by introducing the function $f(z)=\frac{1}{z^{4}+1}$. Then

$$
I=\frac{1}{2} \lim _{R \rightarrow \infty} \int_{[-R, R]} f(z) d z
$$

But this doesn't help as it is just the same problem in disguise.

Getting More Complex

$$
\Gamma_{R}=[-R, R]+C_{R}^{+}
$$

Now we introduce the contour $\Gamma_{R}=[-R, R]+C_{R}^{+}$where C_{R}^{+}is the top half of the positively oriented circle $|z|=R$ from R to $-R$. We assume that we have taken $R>1$ so that Γ_{R} contains both $4^{\text {th }}$-roots of -1 in the upper half-plane: $w_{1}=\exp \left(i \frac{\pi}{4}\right)$ and $w_{2}=w_{1}^{3}=\exp \left(i \frac{3 \pi}{4}\right)$ in its interior.

Then

$$
\int_{[-R, R]} f(z) d z=\int_{\Gamma_{R}} f(z) d z-\int_{C_{R}^{+}} f(z) d z
$$

Getting Closer

But if $R>1$, then

$$
\left|\int_{C_{R}^{+}} f(z) d z\right| \leq \frac{1}{R^{4}-1} \cdot \pi R=\frac{\pi R}{R^{4}-1} .
$$

Thererfore

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} f(z) d z=0
$$

On the other hand, if $R>1$, then

$$
\int_{\Gamma_{R}} f(z) d z=2 \pi i \cdot\left(\operatorname{Res}\left(w_{1}\right)+\operatorname{Res}\left(w_{1}^{3}\right)\right)
$$

where $w_{1}=e^{i \frac{\pi}{4}}=\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}$.

Taking the Limit

But using previous slide

$$
I=\frac{1}{2} \lim _{R \rightarrow \infty} \int_{[-R, R]} f(z) d z=\pi i \cdot\left[\operatorname{Res}\left(w_{1}\right)+\operatorname{Res}\left(w_{1}^{3}\right)\right]+0
$$

Now using the Simple Pole Lemma we have

$$
\operatorname{Res}\left(w_{1}\right)=\left.\frac{1}{4 z^{3}}\right|_{z=w_{1}}=\frac{1}{4 w_{1}^{3}}=-\frac{w_{1}}{4},
$$

while

$$
\operatorname{Res}\left(w_{1}^{3}\right)=\frac{1}{4 w_{1}^{9}}=\frac{1}{4 w_{1}}=\frac{\overline{w_{1}}}{4} .
$$

Therefore

$$
I=\pi i \cdot\left(\frac{-w_{1}+\overline{w_{1}}}{4}\right)=\pi i \frac{1}{4} \cdot-i \frac{2}{\sqrt{2}}=\frac{\pi}{2 \sqrt{2}} .
$$

Remark

There is no class on Monday! I will hold office hours as usual on Tuesday. On Wednesday, we will see how to generalize this method. We will diverge a bit from the treatment in the text.

Enough for today.

