Math 43: Spring 2020 Lecture 26 Summary

Dana P. Williams
Dartmouth College

Friday May 29, 2020

Remember

Theorem (Plus Two Residue Theorem)

Suppose that $p(z)$ and $q(z)$ are polynomials with real coefficients such that $\operatorname{deg} p(z)+2 \leq \operatorname{deg} q(z)$ and such that $q(z)$ has no real roots. Let $a \geq 0$ and define $F(z)=\frac{p(z)}{q(z)} e^{i a z}$. Then

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos (a x) d x=\operatorname{Re}\left[2 \pi i \sum_{\operatorname{Im}(z)>0} \operatorname{Res}(F ; z)\right] \text { and } \\
& \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin (a x) d x=\operatorname{Im}\left[2 \pi i \sum_{\operatorname{Im}(z)>0} \operatorname{Res}(F ; z)\right]
\end{aligned}
$$

In particular, if $a=0$, then

$$
\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} d x=2 \pi i \sum_{\operatorname{lm}(z)>0} \operatorname{Res}(F ; z)
$$

Plus One

Theorem (Plus One Residue Theorem)

Suppose that $p(z)$ and $q(z)$ are polynomials with real coefficients such that $\operatorname{deg} p(z)+1 \leq \operatorname{deg} q(z)$ and such that $q(z)$ has no real roots. Let $a>0$ and define $F(z)=\frac{p(z)}{q(z)} e^{i z z}$. Then

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos (a x) d x=\operatorname{Re}\left[2 \pi i \sum_{\operatorname{Im}(z)>0} \operatorname{Res}(F ; z)\right] \quad \text { and } \\
& \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin (a x) d x=\operatorname{Im}\left[2 \pi i \sum_{\operatorname{Im}(z)>0} \operatorname{Res}(F ; z)\right]
\end{aligned}
$$

Remark

The point here is that if the cosine and sine terms are really there, then our integrals converge as principal value integrals even if the degree of $p(z)$ is only one less than the degree of $q(z)$.

Jordan's Lemma

Theorem (Jordan's Lemma)

Suppose that $p(z)$ and $q(z)$ are polynomials with

$$
\operatorname{deg} p(z)+1 \leq \operatorname{deg} q(z)
$$

Let

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z} \quad \text { with } a>0
$$

Then

$$
\lim _{R \rightarrow 0} \int_{C_{R}^{+}} F(z) d z=0
$$

An Example

Example

If $a>0$, then we can compute

$$
I=\int_{-\infty}^{\infty} \frac{x \sin (a x)}{x^{2}+2 x+1} d x
$$

By the Plus One Residue Theorem with $F(z)=\frac{z e^{i a z}}{z^{2}+2 z+1}$, I is

$$
\begin{aligned}
& =\operatorname{Im}(2 \pi i \operatorname{Res}(F ;-1+i)) \\
& =\frac{\pi}{e^{a}}(\cos (a)+\sin (a))
\end{aligned}
$$

Note that our answer must be a real number. However, in this case, there is no reason that the answer must be positive.

Back to Thinking

Example

Compute $I=$ p.v. $\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x$ where $0<a<1$.

Remark

Let $f(z)=\frac{e^{a z}}{1+e^{z}}$.
(1) We need $a<1$ so that $\int_{0}^{\infty} f(x) d x<\infty$.
(2) We need $a>0$ so that $\int_{-\infty}^{0} f(x) d x<\infty$.
(3) This means we could drop the principal value, but let's not worry about that now.
(4) The real rub here is that f has poles at $(2 k+1) \pi i$ for all $k \in \mathbf{Z}$. Worse, there is no reason to suspect that $\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} f(z) d z \rightarrow 0$! Therefore using $\Gamma_{R}=[-R, R]+C_{R}^{+}$as in the past won't work.

We consider the positively oriented rectangular contour $\Gamma_{\rho}=[-\rho, \rho]+\gamma_{2}^{\rho}-\gamma_{3}^{\rho}-\gamma_{4}^{\rho}$ where the γ_{k}^{ρ} are the directed line segments drawn to the left.

The choice of orientations are just to ease some computations down the road. For now note that for all $\rho>0$, the Cauchy Residue Theorem implies

$$
\int_{\Gamma_{\rho}} f(z) d z=2 \pi i \operatorname{Res}(f ; i \pi)
$$

Compute

We had to show that $\lim _{\rho \rightarrow \infty} \int_{\gamma_{k}^{\rho}} f(z) d z=0$ for the two vertical line segments, while

$$
\lim _{\rho \rightarrow \infty} \int_{\gamma_{3}^{\rho}} f(z) d z=e^{2 \pi i a} \text { p.v. } \int_{-\infty}^{\infty} f(x) d x
$$

Putting it all together gives

$$
\text { p.v. } \begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\frac{2 \pi i}{1-e^{2 \pi i a}} \operatorname{Res}(f ; \pi i) \\
& =\frac{\pi}{\sin (\pi a)}
\end{aligned}
$$

Problem \#11 in $\S 6.3$ is another fun variation on this theme.

Quite Enough

Remark

That completes our investigations into evaluating real integrals using residues. We'll end the course Monday and Wednesday next week with some more applications of the residue theory.

