Math 43: Spring 2020 Lecture 26 Part II

Dana P. Williams
Dartmouth College

Friday May 29, 2020

Recall

Theorem (Plus One Residue Theorem)

Suppose that $p(z)$ and $q(z)$ are polynomials with real coefficients such that $\operatorname{deg} p(z)+1 \leq \operatorname{deg} q(z)$ and such that $q(z)$ has no real roots. Let $a>0$ and define $F(z)=\frac{p(z)}{q(z)} e^{i a z}$. Then

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos (a x) d x=\operatorname{Re}\left[2 \pi i \sum_{\operatorname{Im}(z)>0} \operatorname{Res}(F ; z)\right] \quad \text { and } \\
& \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin (a x) d x=\operatorname{Im}\left[2 \pi i \sum_{\operatorname{Im}(z)>0} \operatorname{Res}(F ; z)\right]
\end{aligned}
$$

An Example

Example

Compute $I=\int_{-\infty}^{\infty} \frac{x \sin (a x)}{x^{2}+2 x+1} d x$ where $a>0$.

Solution.

Well, there really isn't much to do here except to apply the "Plus One Residue Theorem" properly. We need $F(z)=\frac{z e^{i a z}}{z^{2}+2 z+2}$. Then

$$
I=\operatorname{Im}(2 \pi i \operatorname{Res}(F ;-1+i))
$$

Continued

Solution Continued.

By the Simple Pole Lemma

$$
\begin{aligned}
\operatorname{Res}(F ;-1+i) & =\left.\frac{z e^{i a z}}{2 z+2}\right|_{z=-1+i}=\frac{(-1+i) e^{-i a-a}}{-2+2 i+2} \\
& =\frac{e^{-a}}{2 i}(-1+i)(\cos (a)-i \sin (a)) \\
& =\frac{e^{-a}}{2 i}[\sin (a)-\cos (a)+i(\cos (a)+\sin (a))]
\end{aligned}
$$

Thus

$$
I=\operatorname{Im}(2 \pi i \operatorname{Res}(F ;-1+i))=\frac{\pi}{e^{a}}(\cos (a)+\sin (a)) .
$$

Break Time

Remark

After a Mathematica Demo, we'll see that we can't always use the contour Γ_{R} as we did the the Plus Two and Plus One Residue Theorems.

There will be a break after the Demo.

