Math 43: Spring 2020 Lecture 26 Part II

Dana P. Williams

Dartmouth College

Friday May 29, 2020

Recall

Theorem (Plus One Residue Theorem)

Suppose that p(z) and q(z) are polynomials with real coefficients such that $\deg p(z)+1\leq \deg q(z)$ and such that q(z) has no real roots. Let a>0 and define $F(z)=\frac{p(z)}{q(z)}e^{iaz}$. Then

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos(ax) \, dx = \operatorname{Re} \left[2\pi i \sum_{\operatorname{Im}(z) > 0} \operatorname{Res}(F; z) \right] \quad \text{and} \quad \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin(ax) \, dx = \operatorname{Im} \left[2\pi i \sum_{\operatorname{Im}(z) > 0} \operatorname{Res}(F; z) \right]$$

An Example

Example

Compute
$$I = \int_{-\infty}^{\infty} \frac{x \sin(ax)}{x^2 + 2x + 1} dx$$
 where $a > 0$.

Solution.

Well, there really isn't much to do here except to apply the "Plus

One Residue Theorem" properly. We need $F(z)=\frac{ze^{iaz}}{z^2+2z+2}$. Then

$$I = \operatorname{Im}(2\pi i \operatorname{Res}(F; -1 + i)).$$

Continued

Solution Continued.

By the Simple Pole Lemma

$$\operatorname{Res}(F; -1 + i) = \frac{ze^{iaz}}{2z + 2} \Big|_{z = -1 + i} = \frac{(-1 + i)e^{-ia - a}}{-2 + 2i + 2}$$
$$= \frac{e^{-a}}{2i} (-1 + i)(\cos(a) - i\sin(a))$$
$$= \frac{e^{-a}}{2i} [\sin(a) - \cos(a) + i(\cos(a) + \sin(a))]$$

Thus

$$I = \operatorname{Im}(2\pi i \operatorname{Res}(F; -1 + i)) = \frac{\pi}{e^a}(\cos(a) + \sin(a)). \quad \Box$$

Break Time

Remark

After a Mathematica Demo, we'll see that we can't always use the contour Γ_R as we did the the Plus Two and Plus One Residue Theorems.

There will be a break after the Demo.