Math 43: Spring 2020 Lecture 27 Summary

Dana P. Williams

Dartmouth College

Monday June 1, 2020

- We should be recording.
- The Final Exam will be made available Wednesday after our last class meeting and must be uploaded by SUNDAY at 9pm.
- Sextra office hours today from 1:30-2:30.
- Office hours as usual TTh.

Definition

Let Γ be a (not necessarily simple) closed contour. If $a \notin \Gamma$, then we call

$$\operatorname{Ind}_{\Gamma}(a) = rac{1}{2\pi i} \int_{\Gamma} rac{1}{z-a} \, dz$$

the index of Γ about a.

The idea is simple. The index is supposed to count the number of times Γ encircles *a* in a counterclockwise direction. In simple examples, such as at left, this is borne out by the Deformation Invariance Theorem.

Theorem

Let Γ be a closed contour. If $a \notin \Gamma$, then $Ind_{\Gamma}(a)$ is an integer. (Thus what every Ind_{Γ} "counts", at least it counts it in whole numbers!)

Theorem (Walking the Dog Lemma)

Suppose that Γ_0 and Γ_1 are closed contours with admissible parameterizations $z_k : [0,1] \rightarrow \mathbf{C}$ for k = 0 and k = 1. If $a \in \mathbf{C}$ is such that

$$ig|z_0(t)-z_1(t)ig| for all $t\in[0,1]$$$

then $\operatorname{Ind}_{\Gamma_0}(a) = \operatorname{Ind}_{\Gamma_1}(a)$.

The idea is that if Willy and I take a walk around the bonfire on the Green and Willy never gets further from me than I am from the bondfire, then we walk around the bonfire the same number of times.

As a corollary of the Cauchy Residue Theorem, we proved the following as a homework assignment.

Theorem (HW EP-2)

Suppose that f is analytic on and inside a positively oriented simple closed contour Γ and that f does not vanish on Γ . Then f has at most finitely many zeros inside of Γ and

$$\frac{1}{2\pi i}\int_{\Gamma}\frac{f'(z)}{f(z)}\,dz=N_f$$

where N_f is the number of zeros of f inside Γ counted up to multiplicity.

Remark

On homework, we were allowed to assume that f had only finitely many zeros inside Γ . But as we argued in lecture, this is automatics since the zeros on non-constant analytic functions are isolated.

Remark

If Γ is a contour in a domain D and f is analytic on D, then $f(\Gamma)$ is also a contour. If $z : [0, 1] \to \mathbf{C}$ is an admissible paramterization of Γ , then $w : [0, 1] \to \mathbf{C}$, given by w(t) = f(z(t)) is an admissible parameterization of $f(\Gamma)$.

Theorem

Suppose that f is analytic on and inside a positively oriented simple closed contour Γ and that f does not vanish on Γ . Then

 $\operatorname{Ind}_{f(\Gamma)}(0) = N_f$

where N_f is the number of zeros of f inside of Γ counted up to multiplicity.

An Example

The function $f(z) = z^2 + z + 1$ has exactly two simple zeros inside the positively oriented circle Γ equal to |z| = 2 and is nonzero on Γ . We can verify the previous result as follows.

centered at the origin and the zeros of $f(z) = z^2 + z + 1$

with $\operatorname{Ind}_{f(\Gamma)}(0) = 2$

Figure: Counting the zeros of $f(z) = z^2 + z + 1$

Theorem (Rouche's Theorem)

Suppose that f and g are analytic on and inside a simple closed contour Γ and that

$$|f(z)-g(z)|<|f(z)|$$
 for all $z\in\Gamma$.

Then f and g have the same number of zeros inside of Γ up to multiplicity.

Example

Show that $p(z) = z^5 + 3z^3 + 7$ has five distinct zeros in the disk $B_2(0)$.

We will finish up on Wednesday with one more key result about analytic functions. Our class meeting will be the last opportunity for questions on the material in the course.