Math 43: Spring 2020 Lecture 27 Part I

Dana P. Williams

Dartmouth College

Monday June 1, 2020

The Index

Definition

Let Γ be a (not necessarily simple) closed contour. If $a \notin \Gamma$, then we call

$$\operatorname{Ind}_{\Gamma}(a) = \frac{1}{2\pi i} \int_{\Gamma} \frac{1}{z - a} \, dz$$

the index of Γ about a.

Using the Deformation Invariance Theorem as motivation, it would seem that $\operatorname{Ind}_{\Gamma}(a)$ should "count" the number of times Γ wraps around a in a counter-clockwise direction. In the example at left, it is clear that $\operatorname{Ind}_{\Gamma}(a)$ equals two if a is in the small green domain, equals one if a is in the middle domain, and is always zero in the domain which is the exterior of Γ .

Getting Precise

$\mathsf{Theorem}$

Let Γ be a closed contour. If $a \notin \Gamma$, then $\operatorname{Ind}_{\Gamma}(a)$ is an integer. (Thus what every $\operatorname{Ind}_{\Gamma}$ "counts", at least it counts it in whole numbers!)

Proof.

Let $z:[0,1]\to \mathbf{C}$ be an admissible parameterization of Γ . Then

$$2\pi i \operatorname{Ind}_{\Gamma}(a) = \int_0^1 \frac{z'(t)}{z(t) - a} dt.$$

For $s \in [0,1]$, let

$$\varphi(s) = \exp\left(\int_0^s \frac{z'(t)}{z(t) - a} dt\right).$$

It will suffice to see that $\varphi(1) = 1$.

Proof

Proof.

Let
$$\psi(t) = \frac{\varphi(t)}{z(t) - a}$$
. Then since $\varphi'(t) = \left(\frac{z'(t)}{z(t) - a}\right) \varphi(t)$, we have
$$\psi'(t) = \frac{\varphi'(t)(z(t) - a) - z'(t)\varphi(t)}{(z(t) - a)^2}$$
$$= \frac{\left(\frac{z'(t)}{z(t) - a}\right)\varphi(t)(z(t) - a) - z'(t)\varphi(t)}{(z(t) - a)^2}$$
$$= 0!$$

Therefore ψ is constant.

Proof

Proof.

Since ψ is constant,

$$\psi(t) = \frac{\varphi(t)}{z(t) - a} = \psi(0) = \frac{1}{z(0) - a}.$$

Thus

$$\varphi(t) = \frac{z(t) - a}{z(0) - a}.$$

Since z(1) = z(0), $\varphi(1) = 1$ as required.

Walking the Dog

Theorem (Walking the Dog Lemma)

Suppose that Γ_0 and Γ_1 are closed contours with admissible parameterizations $z_k:[0,1]\to \mathbf{C}$ for k=0 and k=1. If $a\in \mathbf{C}$ is such that

$$|z_0(t)-z_1(t)|<|z_0(t)-a|$$
 for all $t\in [0,1],$

then $\operatorname{Ind}_{\Gamma_0}(a) = \operatorname{Ind}_{\Gamma_1}(a)$.

The idea is that if Willy and I take a walk around the bonfire on the Green and Willy never gets further from me than I am from the bondfire, then we walk around the bonfire the same number of times.

Proof

Proof.

We can parameterize a new contour, Γ , by

$$z(t) = \frac{z_1(t) - a}{z_0(t) - a}$$
 with $t \in [0, 1]$.

Notice that

$$|z(t) - 1| = \left| \frac{z_1(t) - a - (z_0(t) - a)}{z_0(t) - a} \right|$$
$$= \left| \frac{z_1(t) - z_0(t)}{z_0(t) - a} \right| < 1.$$

This means Γ lies inside the simply connected disk $B_1(1)$. Thus by the Cauchy Integral Theorem

$$\operatorname{Ind}_{\Gamma}(0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{1}{w} \, dw = 0.$$

Finish

Proof.

On the other hand,

$$\begin{aligned} \operatorname{Ind}_{\Gamma}(0) &= \frac{1}{2\pi i} \int_{0}^{1} \frac{1}{z(t)} z'(t) \, dt \\ &= \frac{1}{2\pi i} \int_{0}^{1} \frac{z_{0}(t) - a}{z_{1}(t) - a} \cdot \frac{z'_{1}(t)(z_{0}(t) - a) - z'_{0}(t)(z_{1}(t) - a)}{(z_{0}(t) - a)^{2}} \, dt \\ &= \frac{1}{2\pi i} \int_{0}^{1} \left(\frac{z'_{1}(t)}{z_{1}(t) - a} - \frac{z'_{0}(t)}{z_{0}(t) - a} \right) \, dt \\ &= \operatorname{Ind}_{\Gamma_{1}}(a) - \operatorname{Ind}_{\Gamma_{0}}(a). \end{aligned}$$

Since $Ind_{\Gamma}(0) = 0$, we're done.

Break Time

Remark

Ok, so we've walked the dog.

Now we get a break too.