Math 43: Spring 2020 Lecture 27 Part I

Dana P. Williams
Dartmouth College

Monday June 1, 2020

The Index

Definition

Let Γ be a (not necessarily simple) closed contour. If $a \notin \Gamma$, then we call

$$
\operatorname{Ind}_{\Gamma}(a)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{z-a} d z
$$

the index of Γ about a.

Using the Deformation Invariance Theorem as motivation, it would seem that $\operatorname{Ind}_{\Gamma}(a)$ should "count" the number of times Γ wraps around a in a counter-clockwise direction. In the example at left, it is clear that $\operatorname{Ind}_{\Gamma}(a)$ equals two if a is in the small green domain, equals one if a is in the middle domain, and is always zero in the domain which is the exterior of Γ.

Getting Precise

Theorem

Let Γ be a closed contour. If a $\notin \Gamma$, then $\operatorname{Ind}_{\Gamma}(a)$ is an integer. (Thus what every Ind Γ "counts", at least it counts it in whole numbers!)

Proof.

Let $z:[0,1] \rightarrow \mathbf{C}$ be an admissible parameterization of Γ. Then

$$
2 \pi i \operatorname{lnd}_{\Gamma}(a)=\int_{0}^{1} \frac{z^{\prime}(t)}{z(t)-a} d t
$$

For $s \in[0,1]$, let

$$
\varphi(s)=\exp \left(\int_{0}^{s} \frac{z^{\prime}(t)}{z(t)-a} d t\right)
$$

It will suffice to see that $\varphi(1)=1$.

Proof

Proof.

Let $\psi(t)=\frac{\varphi(t)}{z(t)-a}$. Then since $\varphi^{\prime}(t)=\left(\frac{z^{\prime}(t)}{z(t)-a}\right) \varphi(t)$, we have

$$
\begin{aligned}
\psi^{\prime}(t) & =\frac{\varphi^{\prime}(t)(z(t)-a)-z^{\prime}(t) \varphi(t)}{(z(t)-a)^{2}} \\
& =\frac{\left(\frac{z^{\prime}(t)}{z(t)-a}\right) \varphi(t)(z(t)-a)-z^{\prime}(t) \varphi(t)}{(z(t)-a)^{2}} \\
& =0!
\end{aligned}
$$

Therefore ψ is constant.

Proof

Proof.

Since ψ is constant,

$$
\psi(t)=\frac{\varphi(t)}{z(t)-a}=\psi(0)=\frac{1}{z(0)-a}
$$

Thus

$$
\varphi(t)=\frac{z(t)-a}{z(0)-a}
$$

Since $z(1)=z(0), \varphi(1)=1$ as required.

Walking the Dog

Theorem (Walking the Dog Lemma)

Suppose that Γ_{0} and Γ_{1} are closed contours with admissible parameterizations $z_{k}:[0,1] \rightarrow \mathbf{C}$ for $k=0$ and $k=1$. If $a \in \mathbf{C}$ is such that

$$
\left|z_{0}(t)-z_{1}(t)\right|<\left|z_{0}(t)-a\right| \quad \text { for all } t \in[0,1]
$$

then $\operatorname{Ind}_{\Gamma_{0}}(a)=\operatorname{Ind}_{\Gamma_{1}}(a)$.

The idea is that if Willy and I take a walk around the bonfire on the Green and Willy never gets further from me than I am from the bondfire, then we walk around the bonfire the same number of times.

Proof

Proof.

We can parameterize a new contour, Γ, by

$$
z(t)=\frac{z_{1}(t)-a}{z_{0}(t)-a} \quad \text { with } t \in[0,1] .
$$

Notice that

$$
\begin{aligned}
|z(t)-1| & =\left|\frac{z_{1}(t)-a-\left(z_{0}(t)-a\right)}{z_{0}(t)-a}\right| \\
& =\left|\frac{z_{1}(t)-z_{0}(t)}{z_{0}(t)-a}\right|<1 .
\end{aligned}
$$

This means Γ lies inside the simply connected disk $B_{1}(1)$. Thus by the Cauchy Integral Theorem

$$
\operatorname{Ind}_{\Gamma}(0)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{w} d w=0
$$

Finish

Proof.

On the other hand,

$$
\begin{aligned}
\operatorname{Ind}_{\Gamma}(0) & =\frac{1}{2 \pi i} \int_{0}^{1} \frac{1}{z(t)} z^{\prime}(t) d t \\
= & \frac{1}{2 \pi i} \int_{0}^{1} \frac{z_{0}(t)-a}{z_{1}(t)-a} \cdot \frac{z_{1}^{\prime}(t)\left(z_{0}(t)-a\right)-z_{0}^{\prime}(t)\left(z_{1}(t)-a\right)}{\left(z_{0}(t)-a\right)^{2}} d t \\
& =\frac{1}{2 \pi i} \int_{0}^{1}\left(\frac{z_{1}^{\prime}(t)}{z_{1}(t)-a}-\frac{z_{0}^{\prime}(t)}{z_{0}(t)-a}\right) d t \\
& =\operatorname{lnd}_{\Gamma_{1}}(a)-\operatorname{lnd}_{\Gamma_{0}}(a) .
\end{aligned}
$$

Since $\operatorname{Ind}(0)=0$, we're done.

Break Time

Remark
 Ok, so we've walked the dog.

Now we get a break too.

