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The Value of Homework

As a corollary of the Cauchy Residue Theorem, we proved the
following as a homework assignment.

Theorem (HW EP-2)

Suppose that f is analytic on and inside a positively oriented
simple closed contour Γ and that f does not vanish on Γ. Then f
has at most finitely many zeros inside of Γ and

1

2πi

∫
Γ

f ′(z)

f (z)
dz = Nf

where Nf is the number of zeros of f inside Γ counted up to
multiplicity.
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Finitely Many Zeros

You proved the result on the previous slide using the assumption
that f had finitely many zeros inside of Γ. To see that this must be
the case, suppose f had infinitely many zeros in the interior, D, of
Γ. Because D ∪ Γ is closed and bounded, there would be a
sequence (zk) of zeros of f converging to some z0 ∈ D ∪ Γ. Since
f does not vanish on Γ, we must have z0 ∈ D. By continuity,
f (z0) = limk f (zk) = 0. But then z0 is not an isolated zero of f
and f must be constantly equal to zero. But then f is zero on Γ as
well. So the assumption that f has only finitely many zeros inside
of Γ is automatically satisfied.
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But You Made Me Learn About the Index?!?

Let f and Γ be in the homework result. If z : [0, 1]→ C is an
admissible parameterization of Γ, then w : [0, 1]→ C given by
w(t) = f (z(t)) is an admissible parameterization of f (Γ). In fact,
w ′(t) = f ′(z(t))z ′(t). Then

Nf =
1

2πi

∫
Γ

f ′(z)

f (z)
dz =

1

2πi

∫ 1

0

f ′(z(t))z ′(t)

f (z(t))
dt

=
1

2πi

∫ 1

0

w ′(t)

w(t)
dt

=
1

2πi

∫
f (Γ)

1

w
dw

= Indf (Γ)(0).
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Homework Upgrade

Theorem

Suppose that f is analytic on and inside a positively oriented
simple closed contour Γ and that f does not vanish on Γ. Then

Indf (Γ)(0) = Nf

where Nf is the number of zeros of f inside of Γ counted up to
multiplicity.
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An Example

The function f (z) = z2 + z + 1 has exactly two simple zeros inside
the positively oriented circle Γ equal to |z | = 2 and is nonzero on
Γ. We can verify the previous result as follows.

2

2i

(a) The circle Γ of radius 2
centered at the origin and the
zeros of f (z) = z2 + z + 1

−4 4 8

−4

4

(b) The composite path f (Γ)
with Indf (Γ)(0) = 2

Figure: Counting the zeros of f (z) = z2 + z + 1
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Rouche’s Theorem

Theorem (Rouche’s Theorem)

Suppose that f and g are analytic on and inside a simple closed
contour Γ and that

|f (z)− g(z)| < |f (z)| for all z ∈ Γ. (‡)

Then f and g have the same number of zeros inside of Γ up to
multiplicity.

Proof.

Note that (‡) implies that Neither f nor g vanishes on Γ. Let
z : [0, 1]→ C be an admissible parameterization of Γ.
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Willy Time

Proof.

Note that∣∣f (z(t))− g(z(t))
∣∣ < ∣∣f (z(t))− 0

∣∣ for all t ∈ [0, 1].

Now we can apply the Walking the Dog Lemma to f (Γ) and g(Γ)
so that Indf (Γ)(0) = Indg(Γ)(0). Then

Nf = Indf (Γ)(0) = Indg(Γ)(0) = Ng .
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An Example

Example

Show that p(z) = z5 + 3z3 + 7 has five distinct zeros in the disk
B2(0).

Solution.

Let f (z) = z5. Then if |z | = 2, then

|f (z)− p(z)| = |3z3 + 7| ≤ 24 + 7 = 31 < 32 = |f (z)|.

Since, up to multiplicity, f (z) = z5 has 5 zeros inside |z | = 2, by
Rouche’s Theorem, so does p(z). The only remaining question is
whether these zeros are distinct. But
p′(z) = 5z4 + 9z2 = z2(5z2 + 9). It is easy to check, by plugging
in, that none of the zeros of p′(z) are also zeros of p(z). Thus all
the zeros of p(z) are simple and must be distinct.
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Break Time

Remark

Alright, time to rest a bit. We have about a half a lecture to go.
We’ll save that for Wednesday.

Enough
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