Math 43: Spring 2020 Lecture 27 Part II

Dana P. Williams

Dartmouth College

Monday June 1, 2020

The Value of Homework

As a corollary of the Cauchy Residue Theorem, we proved the following as a homework assignment.

Theorem (HW EP-2)

Suppose that f is analytic on and inside a positively oriented simple closed contour Γ and that f does not vanish on Γ . Then f has at most finitely many zeros inside of Γ and

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = N_f$$

where N_f is the number of zeros of f inside Γ counted up to multiplicity.

Finitely Many Zeros

You proved the result on the previous slide using the assumption that f had finitely many zeros inside of Γ . To see that this must be the case, suppose f had infinitely many zeros in the interior, D, of Γ . Because $D \cup \Gamma$ is closed and bounded, there would be a sequence (z_k) of zeros of f converging to some $z_0 \in D \cup \Gamma$. Since f does not vanish on Γ , we must have $z_0 \in D$. By continuity, $f(z_0) = \lim_k f(z_k) = 0$. But then z_0 is not an isolated zero of f and f must be constantly equal to zero. But then f is zero on Γ as well. So the assumption that f has only finitely many zeros inside of Γ is automatically satisfied.

But You Made Me Learn About the Index?!?

Let f and Γ be in the homework result. If $z:[0,1]\to \mathbf{C}$ is an admissible parameterization of Γ , then $w:[0,1]\to \mathbf{C}$ given by w(t)=f(z(t)) is an admissible parameterization of $f(\Gamma)$. In fact, w'(t)=f'(z(t))z'(t). Then

$$N_{f} = \frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{0}^{1} \frac{f'(z(t))z'(t)}{f(z(t))} dt$$
$$= \frac{1}{2\pi i} \int_{0}^{1} \frac{w'(t)}{w(t)} dt$$
$$= \frac{1}{2\pi i} \int_{f(\Gamma)} \frac{1}{w} dw$$
$$= Ind_{f(\Gamma)}(0).$$

Homework Upgrade

Theorem

Suppose that f is analytic on and inside a positively oriented simple closed contour Γ and that f does not vanish on Γ . Then

$$\operatorname{Ind}_{f(\Gamma)}(0) = N_f$$

where N_f is the number of zeros of f inside of Γ counted up to multiplicity.

An Example

The function $f(z)=z^2+z+1$ has exactly two simple zeros inside the positively oriented circle Γ equal to |z|=2 and is nonzero on Γ . We can verify the previous result as follows.

(a) The circle Γ of radius 2 centered at the origin and the zeros of $f(z) = z^2 + z + 1$

(b) The composite path $f(\Gamma)$ with $Ind_{f(\Gamma)}(0) = 2$

Figure: Counting the zeros of $f(z) = z^2 + z + 1$

Rouche's Theorem

Theorem (Rouche's Theorem)

Suppose that f and g are analytic on and inside a simple closed contour Γ and that

$$|f(z)-g(z)|<|f(z)|$$
 for all $z\in\Gamma$. (\ddagger)

Then f and g have the same number of zeros inside of Γ up to multiplicity.

Proof.

Note that (‡) implies that Neither f nor g vanishes on Γ . Let $z:[0,1]\to \mathbf{C}$ be an admissible parameterization of Γ .

Willy Time

Proof.

Note that

$$|f(z(t)) - g(z(t))| < |f(z(t)) - 0|$$
 for all $t \in [0, 1]$.

Now we can apply the Walking the Dog Lemma to $f(\Gamma)$ and $g(\Gamma)$ so that $\operatorname{Ind}_{f(\Gamma)}(0) = \operatorname{Ind}_{g(\Gamma)}(0)$. Then

$$N_f = \operatorname{Ind}_{f(\Gamma)}(0) = \operatorname{Ind}_{g(\Gamma)}(0) = N_g$$
.

An Example

Example

Show that $p(z) = z^5 + 3z^3 + 7$ has five distinct zeros in the disk $B_2(0)$.

Solution.

Let $f(z) = z^5$. Then if |z| = 2, then

$$|f(z) - p(z)| = |3z^3 + 7| \le 24 + 7 = 31 < 32 = |f(z)|.$$

Since, up to multiplicity, $f(z)=z^5$ has 5 zeros inside |z|=2, by Rouche's Theorem, so does p(z). The only remaining question is whether these zeros are distinct. But

 $p'(z) = 5z^4 + 9z^2 = z^2(5z^2 + 9)$. It is easy to check, by plugging in, that none of the zeros of p'(z) are also zeros of p(z). Thus all the zeros of p(z) are simple and must be distinct.

Break Time

Remark

Alright, time to rest a bit. We have about a half a lecture to go. We'll save that for Wednesday.

Enough