Math 43: Spring 2020 Lecture 27 Part II

Dana P. Williams
Dartmouth College

Monday June 1, 2020

As a corollary of the Cauchy Residue Theorem, we proved the following as a homework assignment.

Theorem (HW EP-2)

Suppose that f is analytic on and inside a positively oriented simple closed contour Γ and that f does not vanish on Γ. Then f has at most finitely many zeros inside of Γ and

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z=N_{f}
$$

where N_{f} is the number of zeros of f inside Γ counted up to multiplicity.

Finitely Many Zeros

You proved the result on the previous slide using the assumption that f had finitely many zeros inside of Γ. To see that this must be the case, suppose f had infinitely many zeros in the interior, D, of Γ. Because $D \cup \Gamma$ is closed and bounded, there would be a sequence $\left(z_{k}\right)$ of zeros of f converging to some $z_{0} \in D \cup \Gamma$. Since f does not vanish on Γ, we must have $z_{0} \in D$. By continuity, $f\left(z_{0}\right)=\lim _{k} f\left(z_{k}\right)=0$. But then z_{0} is not an isolated zero of f and f must be constantly equal to zero. But then f is zero on Γ as well. So the assumption that f has only finitely many zeros inside of Γ is automatically satisfied.

But You Made Me Learn About the Index?!?

Let f and Γ be in the homework result. If $z:[0,1] \rightarrow \mathbf{C}$ is an admissible parameterization of Γ, then $w:[0,1] \rightarrow \mathbf{C}$ given by $w(t)=f(z(t))$ is an admissible parameterization of $f(\Gamma)$. In fact, $w^{\prime}(t)=f^{\prime}(z(t)) z^{\prime}(t)$. Then

$$
\begin{aligned}
N_{f}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z & =\frac{1}{2 \pi i} \int_{0}^{1} \frac{f^{\prime}(z(t)) z^{\prime}(t)}{f(z(t))} d t \\
& =\frac{1}{2 \pi i} \int_{0}^{1} \frac{w^{\prime}(t)}{w(t)} d t \\
& =\frac{1}{2 \pi i} \int_{f(\Gamma)} \frac{1}{w} d w \\
& =\operatorname{lnd}_{f(\Gamma)}(0)
\end{aligned}
$$

Homework Upgrade

Theorem

Suppose that f is analytic on and inside a positively oriented simple closed contour Γ and that f does not vanish on Γ. Then

$$
\operatorname{Ind}_{f(\Gamma)}(0)=N_{f}
$$

where N_{f} is the number of zeros of f inside of Γ counted up to multiplicity.

An Example

The function $f(z)=z^{2}+z+1$ has exactly two simple zeros inside the positively oriented circle Γ equal to $|z|=2$ and is nonzero on Γ. We can verify the previous result as follows.

(a) The circle Γ of radius 2
centered at the origin and the zeros of $f(z)=z^{2}+z+1$

(b) The composite path $f(\Gamma)$ with $\operatorname{lnd}_{f(\Gamma)}(0)=2$

Figure: Counting the zeros of $f(z)=z^{2}+z+1$

Rouche's Theorem

Theorem (Rouche's Theorem)

Suppose that f and g are analytic on and inside a simple closed contour Γ and that

$$
|f(z)-g(z)|<|f(z)| \quad \text { for all } z \in \Gamma
$$

Then f and g have the same number of zeros inside of Γ up to multiplicity.

Proof.

Note that (\ddagger) implies that Neither f nor g vanishes on Γ. Let $z:[0,1] \rightarrow \mathbf{C}$ be an admissible parameterization of Γ.

Willy Time

Proof.

Note that

$$
|f(z(t))-g(z(t))|<|f(z(t))-0| \quad \text { for all } t \in[0,1] .
$$

Now we can apply the Walking the Dog Lemma to $f(\Gamma)$ and $g(\Gamma)$ so that $\operatorname{Ind}_{f(\Gamma)}(0)=\operatorname{Ind}_{g(\Gamma)}(0)$. Then

$$
N_{f}=\operatorname{lnd}_{f(\Gamma)}(0)=\operatorname{lnd} g_{(\Gamma)}(0)=N_{g} .
$$

An Example

Example

Show that $p(z)=z^{5}+3 z^{3}+7$ has five distinct zeros in the disk $B_{2}(0)$.

Solution.

Let $f(z)=z^{5}$. Then if $|z|=2$, then

$$
|f(z)-p(z)|=\left|3 z^{3}+7\right| \leq 24+7=31<32=|f(z)|
$$

Since, up to multiplicity, $f(z)=z^{5}$ has 5 zeros inside $|z|=2$, by Rouche's Theorem, so does $p(z)$. The only remaining question is whether these zeros are distinct. But $p^{\prime}(z)=5 z^{4}+9 z^{2}=z^{2}\left(5 z^{2}+9\right)$. It is easy to check, by plugging in, that none of the zeros of $p^{\prime}(z)$ are also zeros of $p(z)$. Thus all the zeros of $p(z)$ are simple and must be distinct.

Break Time

Remark

Alright, time to rest a bit. We have about a half a lecture to go. We'll save that for Wednesday.

Enough

