Math 43: Spring 2020 Lecture 28 Part I

Dana P. Williams

Dartmouth College

Last Day of Class, Wednesday, June 3, 2020

$f(z) = z^3$

disk |z|<1 to itself. Note that f has a zero of order 3 at z=0. Also, f maps the green sector $S_1=\{\ re^{i\theta}: 0\le r<1\ \text{and}\ 0\le \theta<\frac{2\pi}{3}\ \}$ onto |z|<1. But f also maps the red sector $S_2=\{\ re^{i\theta}: 0\le r<1\ \text{and}\ \frac{2\pi}{3}\le \theta<\frac{4\pi}{3}\ \}$ onto |z|<1, the sector $S_3=\{\ re^{i\theta}: 0\le r<1\ \text{and}\ \frac{4\pi}{3}\le \theta<2\pi\ \}$ onto |z|<1. Thus we get a "triple covering" of the punctured disk $B_1'(0)$.

We want to look at the behavior of the map $f(z) = z^3$ from the

Local Behavior of Analytic Functions

Theorem (Local Behavior)

Suppose that f is analytic and non-constant in a domain D. Suppose that w_0 is in the range of f so that $g_{w_0}(z) = f(z) - w_0$ has a zero of order $m \ge 1$ at z_0 . Then there is a $\epsilon > 0$ and a $\delta > 0$ such that f(z) = w has exactly m distinct solutions in $B'_{\epsilon}(z_0) \subset D$ whenever $w \in B'_{\delta}(w_0)$.

The Proof

Proof.

Since the zeros of non-constant analytic functions are isolated and D is open, there is a $\epsilon > 0$ such that

- 2 g_{w_0} has no zeros in $B'_{2\epsilon}(z_0)$, and

Let Γ_{ϵ} be the positively oriented circle $|z-z_0|=\epsilon$. Let

$$\delta = \min_{z \in \Gamma_{\epsilon}} |g_{w_0}(z)|.$$

Then $\delta > 0$ by item 2 above.

More of the Proof

Proof.

If $w \in B'_{\delta}(w_0)$, then let $g_w(z) = f(z) - w$. Then if $z \in \Gamma_{\epsilon}$, we have

$$|g_{w_0}(z)-g_w(z)|=|w_0-w|<\delta\leq |g_{w_0}(z)|.$$

By Rouche's Theorem, g_{w_0} and g_w have the same number of zeros (up to multiplicity) inside Γ_{ϵ} . Since g_{w_0} has m zeros inside $|z-z_0|=\epsilon$, g_w must have m zeros in $B'_{\epsilon}(z_0)$. Since $g'_w=f'$ never vanishes in $B'_{\epsilon}(z_0)$ by item 3, all the zeros of g_w must be distinct.

One-To-One Functions

$\mathsf{Theorem}$

Suppose that f is analytic on D and that there is a $z_0 \in D$ such that $f'(z_0) = 0$. Then f is not one-to-one on D. Hence if f is one-to-one on D, then $f'(z) \neq 0$ for all $z \in D$.

Proof.

We can assume that f is non-constant as the conclusion is obvious otherwise. Let $w_0=f(z_0)$. Then $g_{w_0}(z)=f(z)-w_0$ has a zero of order $m\geq 2$ at z_0 . Then by the previous result, there is a $\epsilon>0$ and a $\delta>$) such that $B_\epsilon(z_0)\subset D$ and such that given $w\in B'_\delta(z_0)$ there are m distinct elements z_1,\ldots,z_m in $B'_\epsilon(z_0)$ such that $f(z_k)=w$. Since $m\geq 2$, f is not one-to-one. This proves the first assertion and the second assertion follows from the first. \square

Remark

The converse to the previous theorem is false. Consider $f(z) = e^z$.

The Open Mapping Theorem

Theorem (Open Mapping Theorem)

Suppose that f is a non-constant analytic function on a domain D. Then the range of f, $f(D) = \{ f(z) : z \in D \}$, is open in \mathbf{C} .

Proof.

Let $w_0 \in f(D)$. We need to find $\delta > 0$ such that $B_\delta(w_0) \subset f(D)$. Let $z_0 \in D$ be such that $f(z_0) = w_0$. Since $g_{w_0}(z) = f(z) - w_0$ has a zero of order $m \geq 1$ at z_0 , there are positive ϵ and δ such that for all $w \in B'_\delta(w_0)$ there is at least one $z \in B'_\epsilon(z_0)$ such that f(z) = w. But then

$$B_{\delta}(w_0) \subset f(B_{\epsilon}(z_0)) \subset f(D).$$

That completes the proof.

A Corollary

We will explore some consequences of the Open Mapping Theorem in homework. But here is a short proof of the Maximum Modulus Theorem (with a slight upgrade).

Theorem (Maximum Modulus Principle)

Suppose that f is analytic on a domain D. If |f(z)| has a local maximum on D, then f is constant.

Proof.

Suppose that f is not constant, but yet there is a $\epsilon>0$ such that $|f(z)|\leq |f(z_0)|$ for all $z\in B_\epsilon(z_0)$. Since f is non-constant, $f(B_\epsilon(z_0))$ is open. Hence there is a $\delta>0$ such that $B_\delta(f(z_0))\subset f(B_\epsilon(z_0))$. If $f(z_0)=|f(z_0)|e^{i\theta_0}$, then $w=\left(|f(z_0)|+\frac{\delta}{2}\right)e^{i\theta_0}=f(z_0)+\frac{\delta}{2}e^{i\theta_0}\in B_\delta(f(z_0))\subset f(B_\epsilon(z_0))$. Thus there is a $z\in B_\epsilon(z_0)$ such that f(z)=w and $|f(z)|=|w|=|f(z_0)|+\frac{\delta}{2}>|f(z_0)|$. This contradicts our assumptions.

Closer to Little Picard

Corollary

Suppose that f is a non-constant entire function. Then its range, $f(\mathbf{C})$, is open and dense.

Proof.

We already proved (on the midterm) that the range of f is dense. It is also open by the Open Mapping Theorem.

All Good Things . . .

Remark

Our Complex Journey has come to an end. While this wasn't the way any of us envisioned spring term for 2020, I hope that you enjoyed the journey nevertheless.

Have a great summer and I hope to meet some of you in person in the not too distant future.