Math 43: Spring 2020 Lecture 3 Part 2

Dana P. Williams
Dartmouth College

April 3, 2020

The Topology of C

Remark

Since the complex numbers are really the plane \mathbf{R}^{2} in disguise, we can "import" its structure from our multivariable calculus courses.

Definition

Let $z_{0} \in \mathbf{C}$ and $r>0$. Then $B_{r}\left(z_{0}\right)=\left\{z \in \mathbf{C}:\left|z-z_{0}\right|<r\right\}$ is called the open ball of radius r centered at z_{0}.

Open and Closed Sets

Definition

Let $U \subset \mathbf{C}$ and $z_{0} \in U$. We say that z_{0} is an interior point of U if there is a $r>0$ such that $B_{r}\left(z_{0}\right) \subset U$. We say that $U \subset \mathbf{C}$ is open if every point in U is an interior point. We say that $F \subset \mathbf{C}$ is closed if its complement $U:=\mathbf{C} \backslash F$ is open.

Example

Consider the sets

$$
\begin{aligned}
& U=\{z \in \mathbf{C}: 1<\operatorname{Re} z<2\} \\
& B=\{z \in \mathbf{C}: 1 \leq \operatorname{Re} z<2\} \\
& F=\{z \in \mathbf{C}: 1 \leq \operatorname{Re} z \leq 2\}
\end{aligned}
$$

Note that U is open, that F is closed, and that B is neither open nor closed.

Line Segments

If $a, b \in \mathbf{C}$, then the line segment from a to b is the set $[a, b]:=\{a+t(b-a) \in \mathbf{C}: t \in[0,1]\}$. If $\left\{z_{0}, z_{1}, \ldots, z_{n}\right\}$ are points in \mathbf{C}, then $\bigcup_{j=1}^{n}\left[z_{j-1}, z_{j}\right]$ is called a polygonal path from z_{0} to z_{n}.

Connected Sets and Domains

Definition

An open set $D \subset \mathbf{C}$ is called connected if every pair of points a and b in D can be joined by polygonal path from a to b that lies entirely in D. A connected open subset of \mathbf{C} is called a domain.

A Lemma

Lemma

If D is a domain, every pair of points in D can be joined by a polygonal path each line segment of which is parallel to one of the coordinate axes.

A Picture Proof.

A Little Multivariable Calculus

Theorem

Suppose that $D \subset \mathbf{C}=\mathbf{R}^{2}$ is a domain and that $u: D \subset \mathbf{C} \rightarrow \mathbf{R}$ is a real-valued function such that

$$
\frac{\partial u}{\partial x}(a, b)=u_{x}(a, b)=0=u_{y}(a, b)=\frac{\partial u}{\partial y}(a, b)
$$

for all $(a, b) \in D$. Then u is constant on D. Here we are writing (a, b) instead of $a+i b$ because this is really a result from multivariable calculus.

Remark

The key to the proof on the next slide is the observation that if $u_{x} \equiv 0$, then $x \mapsto u\left(x, y_{0}\right)$ must be constant for each fixed y_{0}. This is because $u_{x}\left(\cdot, y_{0}\right)$ is just the derivative of this function. Similarly, if $u_{y} \equiv 0$, then $y \mapsto u\left(x_{0}, y\right)$ is constant for each fixed x_{0}.

Proof of the Theorem

Proof of the Theorem on the Previous Slide.

Fix $(a, b) \in D$. It will suffice to see that for all $(x, y) \in D$ we have $u(x, y)=u(a, b)$. Since D is a domain, we can with the help of our unproved lemma, join (a, b) to (x, y) with a polygonal path $\bigcup_{j=1}^{n}\left[z_{j-1}, z_{j}\right]$ with each segment parallel to a coordinate axis. Furthermore, $z_{0}=(a, b)$ and $z_{n}=(x, y)$. But the remark on the previous slide implies that u is constant on each segment. Thus

$$
u(a, b)=u\left(z_{0}\right)=u\left(z_{1}\right)=\cdots=u\left(z_{n}\right)=u(x, y)
$$

This is what we wanted to show.

Time for a Break

