Math 43: Spring 2020 Lecture 3 Part 3

Dana P. Williams
Dartmouth College

April 3, 2020

Complex-Valued Functions

Our goal is to study functions

$$
f: D \subset \mathbf{C} \rightarrow \mathbf{C}
$$

Almost always, D is going to be a domain. Note that we could just as easily view f as a function

$$
f: D \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}
$$

In multivariable calculus we called such things vector fields. In particular,

$$
f(x, y)=(u(x, y), v(x, y))
$$

where $u, v: D \subset \mathbf{R}^{2} \rightarrow \mathbf{R}$ are real-valued functions of two variables. In our new complex world, we will write

$$
f(x+i y)=u(x, y)+i v(x, y)
$$

and both u and v are old friends.

This is Easier that it Sounds

Example

Let $f(z)=\frac{1}{1+z}$. Find u and v such that $f(x+i y)=u(x, y)+i v(x, y)$.

Solution.

$$
\begin{aligned}
f(z) & =\frac{1}{1+z} \cdot \frac{1+\bar{z}}{1+\bar{z}}=\frac{1+\bar{z}}{|1+z|^{2}} \\
& =\frac{1+x-i y}{(x+1)^{2}+y^{2}}=\frac{1+x}{(x+1)^{2}+y^{2}}-i \frac{y}{(x+1)^{2}+y^{2}} .
\end{aligned}
$$

Therefore

$$
u(x, y)=\frac{1+x}{(x+1)^{2}+y^{2}} \quad \text { and } \quad v(x, y)=\frac{-y}{(x+1)^{2}+y^{2}} .
$$

Visualizing Functions

Remark

We don't have enough dimensions to draw graphs of functions $f: C \subset \mathbf{C} \rightarrow \mathbf{C}$. One-admittedly rather poor-substitute is to view f as a transformation from one copy of \mathbf{C} to another.

