Math 43: Spring 2020 Lecture 4 Part 1

Dana P. Williams
Dartmouth College

April 6, 2020

Limits of Sequences

Definition

A sequence $\left(z_{n}\right)_{n=1}^{\infty} \subset \mathbf{C}$ converges to a limit $z_{0} \in \mathbf{C}$ if for all $\epsilon>0$ there is a N such that $n \geq N$ implies $\left|z_{n}-z_{0}\right|<\epsilon$.

Remark

When $\left(z_{n}\right)$ has a limit z_{0} we often write $z_{0}=\lim _{n \rightarrow \infty} z_{n}$ or sometimes just $z_{n} \rightarrow z_{0}$.

Theorem

Suppose that $z_{n}=x_{n}+i y_{n}$ and $z_{0}=x_{0}+i y_{0}$. Then $z_{n} \rightarrow z_{0}$ if and only if $x_{n} \rightarrow x_{0}$ and $y_{n} \rightarrow y_{0}$.

Proof.

This is just a restatement of a result from multivariable calculus. A sequence of vectors converges in \mathbf{R}^{n} if and only if the components of the vectors converge.

Examples

Example

Let $z_{n}=\left(\frac{1+i}{\sqrt{3}-i}\right)^{n}$. Notice that $\left|z_{n}\right|=\left|\frac{1+i}{\sqrt{3}-i}\right|^{n}=\left(\frac{\sqrt{2}}{2}\right)^{n} \rightarrow 0$. But if $z_{n}=x_{n}+i y_{n}$, then $0 \leq\left|x_{n}\right| \leq \sqrt{x_{n}^{2}+y_{n}^{2}}=\left|z_{n}\right|$. By the Squeeze Theorem, we must have $x_{n} \rightarrow 0$. Similarly, $y_{n} \rightarrow 0$. Therefore $z_{n} \rightarrow 0$!

Example

Now let $z_{n}=\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{n}$. Let $w=z_{1}$. Notice that $z_{n}=\left(e^{i \frac{2 \pi}{3}}\right)^{n}=w^{n}$. Then $z_{1}, z_{2}, z_{3}, \cdots=w, w^{2}, 1, w, w^{2}, \ldots$. Therefore in this case, $\lim _{n \rightarrow \infty} z_{n}$ does not exist. (Think geometrically: z_{n} travels around the unit circle continuously without getting close to any particular point.)

Deleted Neighborhoods

Definition

If $z_{0} \in \mathbf{C}$ and $r>0$, then

$$
B_{r}^{\prime}\left(z_{0}\right)=\left\{z \in \mathbf{C}: 0<\left|z-z_{0}\right|<r\right\}
$$

is called a deleted ball of radius r centered at z_{0}. It is also called a punctured disk of radius r centered at z_{0} or even just a deleted neighborhood of z_{0}.

Limits of Functions

Definition

Suppose that f is a complex-valued function defined on a deleted neighborhood of z_{0}. Then we say that

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}
$$

if for all $\epsilon>0$ there is a $\delta>0$ so that $0<\left|z-z_{0}\right|<\delta$ implies that $\left|f(z)-w_{0}\right|<\epsilon$.

Remark

If we choose to view f as a vector valued function defined on a deleted neighborhood of the ordered pair z_{0}, then the limit exists as above exactly when the limit exists as a vector field as defined in our multivariable calculus courses.

Theorem

Suppose that $f(x+i y)=u(x, y)+i v(x, y)$ is defined on a deleted neighborhood of $z_{0}=x_{0}+i y_{0}$. Then

$$
\lim _{z \rightarrow z_{0}} f(z)=a_{0}+i b_{0}
$$

if and only if

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=a_{0} \quad \text { and } \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=b_{0} .
$$

Proof.

This is a standard result from multivariable calculus provide with think of f as a function from $D \subset \mathbf{R}^{2}$ to \mathbf{R}^{2}.

More Multivariable Calculus

Theorem

Suppose that $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ and $\lim _{z \rightarrow z_{0}} g(z)=w_{1}$. Then
(1) $\lim _{z \rightarrow z_{0}} f(z)+g(z)=w_{0}+w_{1}$,
(2) $\lim _{z \rightarrow z_{0}} f(z) g(z)=w_{0} w_{1}$, and
(3) if $w_{1} \neq 0$, then $\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{w_{0}}{w_{1}}$.

Proof.

The proof is a tedious exercise in writing these formulas out in terms of the real and imaginary parts of f, g, w_{0}, and w_{1}. Then we can apply the corresponding results for real-valued functions of two variables. I'll shamelessly leave the details to you.

Continuity

Definition

We say that $f: D \subset \mathbf{C} \rightarrow \mathbf{C}$ is continuous at $z_{0} \in D$ if

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

Remark (NC-17 Warning)

This is the adult mathematician version of this definition. Back at Enormous State University, when I was teaching Business Calculus, the definition of continuity had three parts. One, f is defined in neighborhood of z_{0} (and not just in a deleted neighborhood). Second, the limit $\lim _{z \rightarrow z_{0}} f(z)$ exists. Third, the limit equals $f\left(z_{0}\right)$.

Multivariable Calculus Again

Remark

Note that $f: D \subset \mathbf{C} \rightarrow \mathbf{C}$ is continuous if and only if $f: D \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is continuous as a vector field. The definitions are identical once we translate into vector calculus terms. This means that $f(x+i y)=u(x, y)+i v(x, y)$ is continuous at $z_{0}=a+i b \in D$ exactly when both u and v are continuous at (a, b) as functions from $D \subset \mathbf{R}^{2}$ to \mathbf{R}.

Proposition

Suppose $f, g: D \subset \mathbf{C} \rightarrow \mathbf{C}$ are continuous at z_{0}. Then so are $f+g$ and $f g$. If $g\left(z_{0}\right) \neq 0$, then so is $\frac{f}{\sigma}$. Moreover if h is continuous at $f\left(z_{0}\right)$, then $k(z)=h(f(z))$ is continuous at z_{0}.
(1) It is not hard to check that constant functions and the identity function $f(z)=z$ are continuous everywhere. Hence a polynomial function $p(z)=a_{n} z^{n}+\cdots+a_{1} z+a_{0}$ is continuous everywhere for any constants $a_{k} \in \mathbf{C}$.
(2) Hence a rational function $r(z)=\frac{p(z)}{q(z)}$ is continuous on its natural domain.
(3) Since $f(x+i y)=\exp (x+i y)=e^{x} \cos (y)+i e^{x} \sin (y)$, we see that the complex exponential function $f(z)=e^{z}$ is continuous everywhere.
(9) Let $f(z)=\frac{e^{z^{2}}-z}{z^{3}+1}$. Since the numerator and denominator are "clearly" continuous, the quotient is continuous on its natural domain. Thus f is continuous on
$\mathbf{C} \backslash\left\{-1, e^{i \frac{\pi}{3}}, e^{-i \frac{\pi}{3}}\right\}=\mathbf{C} \backslash\left\{-1, \frac{1}{3}+i \frac{\sqrt{3}}{2}, \frac{1}{3}-i \frac{\sqrt{3}}{2}\right\}$.

Infinite Limits

Definition

Suppose that f is defined on a deleted neighborhood of z_{0}. Then we write $\lim _{z \rightarrow z_{0}} f(z)=\infty$ if $\lim _{z \rightarrow z_{0}}|f(z)|=\infty$.

Example

Find $\lim _{z \rightarrow 1+i} \frac{2 z+1}{z^{2}-2 i}$.

Solution.

Since the denominator vanishes at $1+i$, we can't just take the quotient of the limits. Instead notice that $\left|\frac{2 z+1}{z^{2}-2 i}\right|=\frac{|2 z+1|}{\left|z^{2}-2 i\right|}$. Since $\lim _{z \rightarrow 1+i}|2 z+1|=\sqrt{13}$, while $\lim _{z \rightarrow 1+i}\left|z^{2}-2 i\right|=0$, the limit of their quotient tends to ∞. Hence $\lim _{z \rightarrow 1+i} \frac{2 z+1}{z^{2}-2 i}=\infty$.

Careful

Remark (R vs C)

In first year calculus, we learn that $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist because $\frac{1}{x}$ diverges to ∞ for small positive values of x while it diverges to $-\infty$ for negative values of x near 0 . But since \mathbf{C} isn't ordered, our definition says that $\lim _{z \rightarrow 0} \frac{1}{z}=\infty$!

Break Time

