The Cauchy-Riemann Equations

Theorem (Cauchy-Riemann I)

Suppose that $f(x+i y)=u(x, y)+i v(x, y)$ is complex differentiable at $z_{0}=x_{0}+i y_{0}$. Then

$$
f^{\prime}\left(z_{0}\right)=f_{x}\left(z_{0}\right)=-i f_{y}\left(z_{0}\right)
$$

In particular, both u and v have first partials at $\left(x_{0}, y_{0}\right)$ and

$$
\begin{equation*}
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) \tag{1}
\end{equation*}
$$

Remark

We call (1) the Cauchy-Riemann Equations for f at $z_{0}=x_{0}+i y_{0}$.

Remark (Obvious Question)

If the Cauchy-Riemann equations hold at z_{0}, does it follow that $f^{\prime}\left(z_{0}\right)$ exists? The answer, unfortunately, is "no". A complicated example is given in problem \#4 in Section 2.4 of the text. This means that the converse of Cauchy-Riemann Theorem I is false. Fortunately, the converse is "almost" true. But we had to work very hard to prove this.

Theorem (Cauchy-Riemann II)

Suppose that $f(x+i y)=u(x, y)+i v(x, y)$ is defined on $D=B_{r}\left(z_{0}\right)$ for some $r>0$, and that that the Cauchy-Riemann equations for f are satisfied at $z_{0}=x_{0}+i y_{0}$. Suppose in addition that
(1) u and v have first partials in all of D, and that
(2) these partials are continuous at $\left(x_{0}, y_{0}\right)$.

Then f is complex differentiable at z_{0}.

The Payoff

Corollary

Suppose that $D \subset \mathbf{C}$ is a domain and $f: D \subset \mathbf{C} \rightarrow \mathbf{C}$ is given by $f(z)=u(z)+i v(z)$. If u and v both have continuous first partials in D and satisfy the Cauchy-Riemann equations at every point of D, then f is analytic in D.

Corollary

Let $f(z)=e^{z}$. Then f is entire and $f^{\prime}(z)=e^{z}$ for all $z \in \mathbf{C}$.

Zero Derivative

Theorem

Suppose that f is analytic on a domain D and that $f^{\prime}(z)=0$ for all $z \in D$. Then f is constant on D.

Theorem

Suppose that f is analytic on a domain D. Suppose also that $f(z) \in \mathbf{R}$ for all $z \in D$. Then f is constant.

Remark

In the homework for this lecture, you will discover that other quite reasonable restrictions on analytic functions on a domain force the function to be constant.

