Math 43: Spring 2020 Lecture 5 Part 1

Dana P. Williams

Dartmouth College

April 8, 2020

Taking Complex Derivatives

Let f(x+iy) = u(x,y) + iv(x,y), $z_0 = x_0 + iy_0$ and w = h + ik. Suppose that $f'(z_0)$ exists. Then

$$f'(z_0) = \lim_{w \to 0} \frac{f(z_0 + w) - f(z_0)}{w}$$

$$= \lim_{(h,k) \mapsto (0,0)} \frac{u(x_0 + h, y_0 + k) + iv(x_0 + h, y_0 + k) - u(x_0, y_0) - iv(x_0, y_0)}{h + ik}$$

$$= \lim_{h \to 0} \left[\frac{u(x_0 + h, y_0) - u(x_0, y_0)}{h} + i \frac{v(x_0 + h, y_0) - v(x_0, y_0)}{h} \right]$$

$$= u_x(x_0, y_0) + iv_x(x_0, y_0)$$

$$= f_x(x_0 + iy_0) = f_x(z_0).$$

Remark

Cool. If $f'(z_0)$ exists, then $f'(z_0) = f_x(z_0) = u_x(z_0) + iv_x(z_0)!$

Wait a Minute!

But if $f'(z_0)$ exists, then we must also have

$$f'(z_0) = \lim_{w \to 0} \frac{f(z_0 + w) - f(z_0)}{w}$$

$$= \lim_{(h,k) \to (0,0)} \frac{u(x_0 + h, y_0 + k) + iv(x_0 + h, y_0 + k) - u(x_0, y_0) - iv(x_0, y_0)}{h + ik}$$

$$= \lim_{k \to 0} \left[\frac{u(x_0, y_0 + k) - u(x_0, y_0)}{ik} + i \frac{v(x_0, y_0 + k) - v(x_0, y_0)}{ik} \right]$$

$$= -iu_y(x_0, y_0) + v_y(x_0, y_0)$$

$$= -if_v(x_0 + iv_0) = -if_v(z_0)!$$

Remark

If $f'(z_0)$ exists, then we also have $f'(z_0) = -if_y(z_0)$.

The Cauchy-Riemann Equations

Theorem (Cauchy-Riemann I)

Suppose that f(x + iy) = u(x, y) + iv(x, y) is complex differentiable at $z_0 = x_0 + iy_0$. Then

$$f'(z_0) = f_x(z_0) = -if_y(z_0).$$

In particular, both u and v have first partials at (x_0, y_0) and

$$u_x(x_0, y_0) = v_y(x_0, y_0)$$
 and $u_y(x_0, y_0) = -v_x(x_0, y_0)$. (1)

Remark

We call (2) the Cauchy-Riemann Equations for f at $z_0 = x_0 + iy_0$.

Complex Conjugation

Example

Consider the function $f(z)=\overline{z}$. That is, f(x+iy)=x-iy. Hence u(x,y)=x and v(x,y)=-y. Then $u_x\equiv 1$ while $v_y\equiv -1$. Hence u_x is never equal to v_y . Hence the Cauchy-Riemann equations never hold. Therefore $f(z)=\overline{z}$ is not complex differentiable at a single point!.

Remark (Obvious Question)

If the Cauchy-Riemann equations hold at z_0 , does it follow that $f'(z_0)$ exists? The answer, unfortunately, is "no". A complicated example is given in problem #4 in Section 2.4 of the text. This means that the converse of Cauchy-Riemann Theorem I is false. Fortunately, the converse is "almost" true. But we will have to work very hard to prove this.

The Converse

Theorem (Cauchy-Riemann II)

Suppose that f(x + iy) = u(x, y) + iv(x, y) is defined on $D = B_r(z_0)$ for some r > 0, and that that the Cauchy-Riemann equations for f are satisfied at $z_0 = x_0 + iy_0$. Suppose in addition that

- u and v have first partials in all of D, and that
- **2** these partials are continuous at (x_0, y_0) .

Then f is complex differentiable at z_0 .

Remark

The proof is quite involved. But I think the result is fundamental enough that it justifies the pain of working through it in detail. You may want to bring up the accompanying slides in a separate window.

Back in the Day

We'll need some good old fashioned calculus.

Theorem (Mean Value Theorem)

Suppose that $\varphi : [c,d] \subset \mathbf{R} \to \mathbf{R}$ is continuous and differentiable on (c,d). Then there is a point $t^* \in (c,d)$ such that

$$\frac{\varphi(d) - \varphi(c)}{d - c} = \varphi'(t^*). \tag{2}$$

We will use this result in the following form.

Corollary

Suppose that $\varphi:(c,d)\to \mathbf{R}$ is differentiable. Then if $a,a+h\in(c,d)$,

$$\varphi(a+h)-\varphi(a)=\varphi'(a^*)h$$

for an a^* strictly between a and a+h. In particular, $a^* \to a$ as $h \to 0$.

The Proof

We need to prove that $\lim_{w\to 0} \frac{f(z_0+w)-f(z_0)}{w}$ exists. Let w=h+ik and assume that h and k are small enough so that $z_0+w\in D$. Then

$$\begin{split} & \frac{f(z_0 + w) - f(z_0)}{w} \\ &= \frac{u(x_0 + h, y_0 + k) + iv(x_0 + h, y_0 + k) - u(x_0, y_0) - iv(x_0, y_0)}{h + ik} \\ &= \underbrace{\frac{u(x_0 + h, y_0 + k) - u(x_0, y_0)}{h + ik}}_{\text{real part}} + i \underbrace{\frac{v(x_0 + h, y_0 + k) - v(x_0, y_0)}{h + ik}}_{\text{imaginary part}} \end{split}$$

Using our MVT Corollary, the numerator of the real part is

$$u(x_0 + h, y_0 + k) - u(x_0, y_0 + k) + u(x_0, y_0 + k) - u(x_0, y_0)$$

= $u_x(x_0^*, y_0 + k)h + u_y(x_0, y_0^*)k$

where we know that $(x_0^*, y_0^*) \rightarrow (x_0, y_0)$ as $(h, k) \rightarrow (0, 0)$.

Proof Continued

Now since u_x and u_y are continuous at (x_0,y_0) , $u_x(x_0^*,y_0+k)=u_x(x_0,y_0)+\epsilon_1(h,k)$ where $\epsilon_1(h,k)\to 0$ and $(h,k)\to (0,0)$. Similarly, $u_y(x_0,y_0^*)=u_y(x_0,y_0)+\epsilon_2(h,k)$ and $\epsilon_2(h,k)\to 0$ and $(h,k)\to (0,0)$. This means we can write the numerator of the real part as

(A)
$$u_x(z_0)h + u_y(z_0)k + \epsilon_1(h,k)h + \epsilon_2(h,k)k$$
.

Similarly, we can write the numerator of the imaginary part in the form

(B)
$$v_x(z_0)h + v_y(z_0)k + \epsilon_3(h,k)h + \epsilon_4(h,k)k$$
.

Then $\frac{A+iB}{h+ik}$ simplifies to

$$\frac{h(u_x(z_0) + iv_x(z_0)) + k(u_y(z_0) + iv_y(z_0)) + h(\epsilon_1 + i\epsilon_3) + k(\epsilon_2 + i\epsilon_4)}{h + ik}$$

Since the CR-eqns imply $k(u_y + iv_y) = ik(-iu_y + v_y) = ik(u_x + iv_x)$, the above can be written as

$$u_x(z_0) + iv_x(z_0) + \underbrace{\frac{h(\epsilon_1 + i\epsilon_3) + k(\epsilon_2 + i\epsilon_4)}{h + ik}}_{\text{mess}}.$$

Finish the Proof

Wow! Now we can finish the proof if we can show that the "mess" goes to zero as $w \to 0$. But

$$|\mathsf{mess}| \leq \Big|\frac{h}{h+ik}\Big||\epsilon_1 + i\epsilon_3| + \Big|\frac{k}{h+ik}\Big||\epsilon_2 + i\epsilon_4|$$

$$\leq |\epsilon_1 + i\epsilon_3| + |\epsilon_2 + i\epsilon_4|$$

which tends to 0 as $(h, k) \rightarrow (0, 0)$. Thus

$$\lim_{z \to 0} \frac{f(z_0 + w) - f(z_0)}{w} = u_x(z_0) + iv_x(z_0)$$

and we're done.

Now it is definitely time for a break.