Math 43: Spring 2020 Lecture 5 Part 1

Dana P. Williams
Dartmouth College

April 8, 2020

Taking Complex Derivatives

Let $f(x+i y)=u(x, y)+i v(x, y), z_{0}=x_{0}+i y_{0}$ and $w=h+i k$. Suppose that $f^{\prime}\left(z_{0}\right)$ exists. Then

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{w \rightarrow 0} \frac{f\left(z_{0}+w\right)-f\left(z_{0}\right)}{w} \\
\quad= & \lim _{(h, k) \mapsto(0,0)} \frac{u\left(x_{0}+h, y_{0}+k\right)+i v\left(x_{0}+h, y_{0}+k\right)-u\left(x_{0}, y_{0}\right)-i v\left(x_{0}, y_{0}\right)}{h+i k} \\
& =\lim _{h \rightarrow 0}\left[\frac{u\left(x_{0}+h, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{h}+i \frac{v\left(x_{0}+h, y_{0}\right)-v\left(x_{0}, y_{0}\right)}{h}\right] \\
& =u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right) \\
& =f_{x}\left(x_{0}+i y_{0}\right)=f_{x}\left(z_{0}\right) .
\end{aligned}
$$

Remark

Cool. If $f^{\prime}\left(z_{0}\right)$ exists, then $f^{\prime}\left(z_{0}\right)=f_{x}\left(z_{0}\right)=u_{x}\left(z_{0}\right)+i v_{x}\left(z_{0}\right)$!

Wait a Minute!

But if $f^{\prime}\left(z_{0}\right)$ exists, then we must also have

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{w \rightarrow 0} \frac{f\left(z_{0}+w\right)-f\left(z_{0}\right)}{w} \\
= & \lim _{(h, k) \rightarrow(0,0)} \frac{u\left(x_{0}+h, y_{0}+k\right)+i v\left(x_{0}+h, y_{0}+k\right)-u\left(x_{0}, y_{0}\right)-i v\left(x_{0}, y_{0}\right)}{h+i k} \\
= & \lim _{k \rightarrow 0}\left[\frac{u\left(x_{0}, y_{0}+k\right)-u\left(x_{0}, y_{0}\right)}{i k}+i \frac{v\left(x_{0}, y_{0}+k\right)-v\left(x_{0}, y_{0}\right)}{i k}\right] \\
= & -i u_{y}\left(x_{0}, y_{0}\right)+v_{y}\left(x_{0}, y_{0}\right) \\
& =-i f_{y}\left(x_{0}+i y_{0}\right)=-i f_{y}\left(z_{0}\right)!
\end{aligned}
$$

Remark

If $f^{\prime}\left(z_{0}\right)$ exists, then we also have $f^{\prime}\left(z_{0}\right)=-i f_{y}\left(z_{0}\right)$.

The Cauchy-Riemann Equations

Theorem (Cauchy-Riemann I)

Suppose that $f(x+i y)=u(x, y)+i v(x, y)$ is complex differentiable at $z_{0}=x_{0}+i y_{0}$. Then

$$
f^{\prime}\left(z_{0}\right)=f_{x}\left(z_{0}\right)=-i f_{y}\left(z_{0}\right)
$$

In particular, both u and v have first partials at $\left(x_{0}, y_{0}\right)$ and

$$
\begin{equation*}
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) \tag{1}
\end{equation*}
$$

Remark

We call (2) the Cauchy-Riemann Equations for f at $z_{0}=x_{0}+i y_{0}$.

Complex Conjugation

Example

Consider the function $f(z)=\bar{z}$. That is, $f(x+i y)=x-i y$. Hence $u(x, y)=x$ and $v(x, y)=-y$. Then $u_{x} \equiv 1$ while $v_{y} \equiv-1$. Hence u_{x} is never equal to v_{y}. Hence the Cauchy-Riemann equations never hold. Therefore $f(z)=\bar{z}$ is not complex differentiable at a single point!.

Remark (Obvious Question)

If the Cauchy-Riemann equations hold at z_{0}, does it follow that $f^{\prime}\left(z_{0}\right)$ exists? The answer, unfortunately, is "no". A complicated example is given in problem \#4 in Section 2.4 of the text. This means that the converse of Cauchy-Riemann Theorem I is false. Fortunately, the converse is "almost" true. But we will have to work very hard to prove this.

The Converse

Theorem (Cauchy-Riemann II)

Suppose that $f(x+i y)=u(x, y)+i v(x, y)$ is defined on $D=B_{r}\left(z_{0}\right)$ for some $r>0$, and that that the Cauchy-Riemann equations for f are satisfied at $z_{0}=x_{0}+i y_{0}$. Suppose in addition that
(1) u and v have first partials in all of D, and that
(2) these partials are continuous at $\left(x_{0}, y_{0}\right)$.

Then f is complex differentiable at z_{0}.

Remark

The proof is quite involved. But I think the result is fundamental enough that it justifies the pain of working through it in detail. You may want to bring up the accompanying slides in a separate window.

Back in the Day

We'll need some good old fashioned calculus.

Theorem (Mean Value Theorem)

Suppose that $\varphi:[c, d] \subset \mathbf{R} \rightarrow \mathbf{R}$ is continuous and differentiable on (c, d). Then there is a point $t^{*} \in(c, d)$ such that

$$
\begin{equation*}
\frac{\varphi(d)-\varphi(c)}{d-c}=\varphi^{\prime}\left(t^{*}\right) \tag{2}
\end{equation*}
$$

We will use this result in the following form.

Corollary

Suppose that $\varphi:(c, d) \rightarrow \mathbf{R}$ is differentiable. Then if $a, a+h \in(c, d)$,

$$
\varphi(a+h)-\varphi(a)=\varphi^{\prime}\left(a^{*}\right) h
$$

for an a^{*} strictly between a and $a+h$. In particular, $a^{*} \rightarrow a$ as $h \rightarrow 0$.

We need to prove that $\lim _{w \rightarrow 0} \frac{f\left(z_{0}+w\right)-f\left(z_{0}\right)}{w}$ exists. Let $w=h+i k$ and assume that h and k are small enough so that $z_{0}+w \in D$. Then

$$
\begin{aligned}
& f\left(z_{0}+w\right)-f\left(z_{0}\right) \\
& w \\
&=\frac{u\left(x_{0}+h, y_{0}+k\right)+i v\left(x_{0}+h, y_{0}+k\right)-u\left(x_{0}, y_{0}\right)-i v\left(x_{0}, y_{0}\right)}{h+i k} \\
&=\underbrace{\frac{u\left(x_{0}+h, y_{0}+k\right)-u\left(x_{0}, y_{0}\right)}{h+i k}}_{\text {real part }}+i \underbrace{\frac{v\left(x_{0}+h, y_{0}+k\right)-v\left(x_{0}, y_{0}\right)}{h+i k}}_{\text {imaginary part }}
\end{aligned}
$$

Using our MVT Corollary, the numerator of the real part is

$$
\begin{aligned}
u\left(x_{0}+h, y_{0}+k\right)-u\left(x_{0}, y_{0}+k\right)+u & \left(x_{0}, y_{0}+k\right)-u\left(x_{0}, y_{0}\right) \\
& =u_{x}\left(x_{0}^{*}, y_{0}+k\right) h+u_{y}\left(x_{0}, y_{0}^{*}\right) k
\end{aligned}
$$

where we know that $\left(x_{0}^{*}, y_{0}^{*}\right) \rightarrow\left(x_{0}, y_{0}\right)$ as $(h, k) \rightarrow(0,0)$.

Proof Continued

Now since u_{x} and u_{y} are continuous at $\left(x_{0}, y_{0}\right)$, $u_{x}\left(x_{0}^{*}, y_{0}+k\right)=u_{x}\left(x_{0}, y_{0}\right)+\epsilon_{1}(h, k)$ where $\epsilon_{1}(h, k) \rightarrow 0$ and $(h, k) \rightarrow(0,0)$. Similarly, $u_{y}\left(x_{0}, y_{0}^{*}\right)=u_{y}\left(x_{0}, y_{0}\right)+\epsilon_{2}(h, k)$ and $\epsilon_{2}(h, k) \rightarrow 0$ and $(h, k) \rightarrow(0,0)$. This means we can write the numerator of the real part as
(A) $\quad u_{x}\left(z_{0}\right) h+u_{y}\left(z_{0}\right) k+\epsilon_{1}(h, k) h+\epsilon_{2}(h, k) k$.

Similarly, we can write the numerator of the imaginary part in the form
(B) $\quad v_{x}\left(z_{0}\right) h+v_{y}\left(z_{0}\right) k+\epsilon_{3}(h, k) h+\epsilon_{4}(h, k) k$.

Then $\frac{A+i B}{h+i k}$ simplifies to

$$
\frac{h\left(u_{x}\left(z_{0}\right)+i v_{x}\left(z_{0}\right)\right)+k\left(u_{y}\left(z_{0}\right)+i v_{y}\left(z_{0}\right)\right)+h\left(\epsilon_{1}+i \epsilon_{3}\right)+k\left(\epsilon_{2}+i \epsilon_{4}\right)}{h+i k}
$$

Since the CR-eqns imply $k\left(u_{y}+i v_{y}\right)=i k\left(-i u_{y}+v_{y}\right)=i k\left(u_{x}+i v_{x}\right)$, the above can be written as

$$
u_{x}\left(z_{0}\right)+i v_{x}\left(z_{0}\right)+\underbrace{\frac{h\left(\epsilon_{1}+i \epsilon_{3}\right)+k\left(\epsilon_{2}+i \epsilon_{4}\right)}{h+i k}}_{\text {mess }} .
$$

Finish the Proof

Wow! Now we can finish the proof if we can show that the "mess" goes to zero as $w \rightarrow 0$. But

$$
|\operatorname{mess}| \leq\left|\frac{h}{h+i k}\right|\left|\epsilon_{1}+i \epsilon_{3}\right|+\left|\frac{k}{h+i k}\right|\left|\epsilon_{2}+i \epsilon_{4}\right|
$$

$$
\leq\left|\epsilon_{1}+i \epsilon_{3}\right|+\left|\epsilon_{2}+i \epsilon_{4}\right|
$$

which tends to 0 as $(h, k) \rightarrow(0,0)$. Thus

$$
\lim _{z \rightarrow 0} \frac{f\left(z_{0}+w\right)-f\left(z_{0}\right)}{w}=u_{x}\left(z_{0}\right)+i v_{x}\left(z_{0}\right)
$$

and we're done.

Now it is definitely time for a break.

