Math 43: Spring 2020 Lecture 5 Part 2

Dana P. Williams
Dartmouth College

April 8, 2020

The Payoff

Now that we have a sufficient condition for complex differentiability, we we can prove the following.

Corollary

Suppose that $D \subset \mathbf{C}$ is a domain and $f: D \subset \mathbf{C} \rightarrow \mathbf{C}$ is given by $f(z)=u(z)+i v(z)$. If u and v both have continuous first partials in D and satisfy the Cauchy-Riemann equations at every point of D, then f is analytic in D.

Proof.

Since D is open, it suffices to see that $f^{\prime}(z)$ exists at each point of D. But this follows from the Cauchy-Riemann Theorem II!.

The Complex Exponential Function

Corollary

Let $f(z)=e^{z}$. Then f is entire and $f^{\prime}(z)=e^{z}$ for all $z \in \mathbf{C}$.

Proof.

We have $f(x+i y)=e^{x} \cos (y)+i e^{x} \sin (y)$. Then $u(x, y)=e^{x} \cos (y)$ and $v(x, y)=e^{x} \sin (y)$. We easily see that the first partials are continuous and that

$$
u_{x}(z)=v_{y}(z) \quad \text { and } \quad u_{y}(z)=-v_{x}(z)
$$

for all z. Hence f is differentiable at all z by our Cauchy-Riemann Theorem II. But by our Cauchy-Riemann Theorem I,
$f^{\prime}(x+i y)=u_{x}(x, y)+i v_{x}(x, y)=e^{x} \cos (y)+i e^{x} \sin (y)=f(x+i y)$.

I Told You So!

Remark

Our motivation for the definition of the complex exponential function $f(z)=e^{z}$ was a bit ad hoc. Our first "excuse" for this definition, $e^{x+i y}:=e^{x}(\cos (y)+i \sin (y))$, was that $z \mapsto e^{z}$ had the nice "exponent properties" that $e^{z+w}=e^{z} e^{w}, e^{-z}=\frac{1}{e^{z}}$, etc. But now we have the satisfaction of knowing that $\frac{d}{d z} e^{z}=e^{z}$. We will gather more certainty that our definition is the "right one" as we go further in the course.

Zero Derivative

Theorem

Suppose that f is analytic on a domain D and that $f^{\prime}(z)=0$ for all $z \in D$. Then f is constant on D.

Proof.

By our first CR theorem,

$$
f^{\prime}(z)=f_{x}(z)=u_{x}(z)+i v_{x}(z)=-i f_{y}(z)=v_{y}(z)-i u_{y}(z)
$$

Hence if $f^{\prime}(z) \equiv 0$, then $u_{x} \equiv 0 \equiv u_{y}$. We proved that this implies u is constant. Similarly, $v_{x} \equiv 0 \equiv v_{y}$ and v is constant. Thus f is constant.

Example

Example

Show that f is an entire function and $f^{\prime}(z)=f(z)$ for all z. Show that $f(z)=a e^{z}$ for some $a \in \mathbf{C}$.

Solution.

Since e^{z} never vanishes, the function $h(z)=\frac{f(z)}{e^{z}}$ is entire. But

$$
h^{\prime}(z)=\frac{f^{\prime}(z) e^{z}-f(z) \frac{d}{d z} e^{z}}{\left(e^{z}\right)^{2}}=\frac{f(z) e^{z}-f(z) e^{z}}{e^{2 z}}=0 \quad \text { for all } z \in \mathbf{C} .
$$

It follows from the previous theorem that h is constant. Thus there is a $a \in \mathbf{C}$ such that $h(z)=a$ for all $z \in \mathbf{C}$.

Analytic Functions are Complex

Theorem

Suppose that f is analytic on a domain D. Suppose also that $f(z) \in \mathbf{R}$ for all $z \in D$. Then f is constant.

Proof.

We have $f(z)=u(z)+i v(z)$ with $v \equiv 0$. Thus $v_{x} \equiv 0 \equiv v_{y}$. Then by CR Thm I,

$$
f^{\prime}(z)=u_{x}(z)+i v_{x}(z)=v_{y}(z)+i v_{x}(z)=0 \quad \text { for all } z \in D
$$

Hence f is constant.

Analytic Functions are Non-Trivial

Remark

In the homework for this lecture, you will discover that other quite reasonable restrictions on analytic functions on a domain force the function to be constant.

That is enough for now!

