Harmonic Functions

Definition

Let $u: D \subset \mathbf{R}^2 \to \mathbf{R}$ have continuous second partials in D. We say that u is harmonic in D if

$$rac{\partial^2 u}{\partial x^2}(a,b)+rac{\partial^2 u}{\partial y^2}(a,b)=0=u_{xx}(a,b)+u_{yy}(a,b)$$

for all $(a, b) \in D$.

Example

The function $u(x, y) = e^x \cos(y)$ is harmonic on all of \mathbb{R}^2 .

Theorem

Suppose that f(z) = u(z) + iv(z) is analytic in a domain D. Suppose also that u and v have continuous second partials in D. Then u and v are harmonic in D.

Definition

Suppose that u is harmonic on a domain D. We call v a harmonic conjugate for u on D if f(z) = u(z) + iv(z) is analytic on D.

Example

Since $e^{x+iy} = e^x \cos(y) + ie^x \sin(y)$ is entire, $v(x, y) = e^x \sin(y)$ is a harmonic conjugate for $u(x, y) = e^x \cos(y)$ in the complex plane. Of course, so is $v_1(x, y) = e^x \sin(y) + \sqrt{17}$.

Proposition

Suppose that v and w are both harmonic conjugates for u in a domain D. Then there is a real constant k such that

$$v(z) = w(z) + k$$
 for all $z \in D$.

Remark

The question of whether or not a given harmonic function in a domain D always has a harmonic conjugate in D is very subtle. In general, it depends on the domain D. For homework this week, you are going to see that while $u(z) = \ln(|z|)$ is harmonic on the punctured plane $\mathbf{C} \setminus \{0\}$, it can not have a harmonic conjugate on the entire punctured plane! I provided some hints on the assignment page.

Back to High School

Definition

A complex polynomial is a function of the form $p(z) = a_0 + a_1 z + \cdots + a_n z^n$ with each $a_k \in \mathbb{C}$ and $n \ge 0$. We will write $\mathbb{C}[z]$ for the complex vector space of all polynomial functions. If $a_n \ne 0$, then we call *n* the degree of p(z) and write deg p(z) = n. For technical reasons, we define the degree of the zero polynomial to be -1.

Theorem (Division Algorithm—aka Long Division)

Suppose that p(z) and q(z) are nonzero polynomials. Then there are unique polynomials r(z) and s(z) such that p(z) = s(z)q(z) + r(z) such that deg $r(z) < \deg q(z)$. Alternatively,

$$\frac{p(z)}{q(z)} = s(z) + \frac{r(z)}{q(z)}$$

with deg $r(z) < \deg q(z)$.

Definition

If $p(z) \in \mathbf{C}[z]$ and deg $p(z) \ge 1$, then we call a a root of p(z) if p(a) = 0.

Theorem

Suppose $p(z) \in \mathbf{C}[z]$ with deg $p(z) \ge 1$. Then a is a root of p(z) if and only if p(z) = q(z)(z - a) with $q(z) \in \mathbf{C}[z]$. In this case, we say that (z - a) divides p(z) or that (z - a) is a factor of p(z).

Theorem (The Fundamental Theorem of Algebra)

Every polynomial in $\mathbf{C}[z]$ with deg $p(z) \ge 1$ has at least one root.

Corollary

Suppose that $p(z) \in \mathbf{C}[z]$ with deg $p(z) = n \ge 1$. Then there are complex constants a and z_1, \ldots, z_n such that $p(z) = a(z - z_1)(z - z_2) \cdots (z - z_n)$.

Definition (Canonical Bad Apple)

A quadratic polynomial $q(z) = az^2 + bz = c$ with real coefficients is called an irreducible quadratic if q(z) has no real roots.

Example

 $q(z) = z^2 + 1$ and $s(z) = z^2 + z + 1$ are examples of irreducible quadratics.

Theorem

Suppose that $p(z) \in \mathbb{C}[z]$ has all real coefficients. The p(z) factors into a product of irreducible quadratics and real linear factors: $p(z) = a(z - r_1) \cdots (z - r_k)q_1(z) \cdots q_s(z)$ with deg p(z) = k + 2s.