## Harmonic Functions

## Definition

Let $u: D \subset \mathbf{R}^{2} \rightarrow \mathbf{R}$ have continuous second partials in $D$. We say that $u$ is harmonic in $D$ if

$$
\frac{\partial^{2} u}{\partial x^{2}}(a, b)+\frac{\partial^{2} u}{\partial y^{2}}(a, b)=0=u_{x x}(a, b)+u_{y y}(a, b)
$$

for all $(a, b) \in D$.

## Example

The function $u(x, y)=e^{x} \cos (y)$ is harmonic on all of $\mathbf{R}^{2}$.

## Theorem

Suppose that $f(z)=u(z)+i v(z)$ is analytic in a domain $D$. Suppose also that $u$ and $v$ have continuous second partials in $D$. Then $u$ and $v$ are harmonic in $D$.

## Harmonic Conjugates

## Definition

Suppose that $u$ is harmonic on a domain $D$. We call $v$ a harmonic conjugate for $u$ on $D$ if $f(z)=u(z)+i v(z)$ is analytic on $D$.

## Example

Since $e^{x+i y}=e^{x} \cos (y)+i e^{x} \sin (y)$ is entire, $v(x, y)=e^{x} \sin (y)$ is a harmonic conjugate for $u(x, y)=e^{x} \cos (y)$ in the complex plane. Of course, so is $v_{1}(x, y)=e^{x} \sin (y)+\sqrt{17}$.

## Proposition

Suppose that $v$ and $w$ are both harmonic conjugates for $u$ in a domain $D$. Then there is a real constant $k$ such that

$$
v(z)=w(z)+k \quad \text { for all } z \in D
$$

## A Challenging Homework Problem

## Remark

The question of whether or not a given harmonic function in a domain $D$ always has a harmonic conjugate in $D$ is very subtle. In general, it depends on the domain $D$. For homework this week, you are going to see that while $u(z)=\ln (|z|)$ is harmonic on the punctured plane $\mathbf{C} \backslash\{0\}$, it can not have a harmonic conjugate on the entire punctured plane! I provided some hints on the assignment page.

## Back to High School

## Definition

A complex polynomial is a function of the form $p(z)=a_{0}+a_{1} z+\cdots a_{n} z^{n}$ with each $a_{k} \in \mathbf{C}$ and $n \geq 0$. We will write $\mathbf{C}[z]$ for the complex vector space of all polynomial functions. If $a_{n} \neq 0$, then we call $n$ the degree of $p(z)$ and write $\operatorname{deg} p(z)=n$. For technical reasons, we define the degree of the zero polynomial to be -1 .

## Theorem (Division Algorithm—aka Long Division)

Suppose that $p(z)$ and $q(z)$ are nonzero polynomials. Then there are unique polynomials $r(z)$ and $s(z)$ such that $p(z)=s(z) q(z)+r(z)$ such that $\operatorname{deg} r(z)<\operatorname{deg} q(z)$.
Alternatively,

$$
\frac{p(z)}{q(z)}=s(z)+\frac{r(z)}{q(z)}
$$

with $\operatorname{deg} r(z)<\operatorname{deg} q(z)$.

## Roots

## Definition

If $p(z) \in \mathbf{C}[z]$ and $\operatorname{deg} p(z) \geq 1$, then we call $a$ a root of $p(z)$ if $p(a)=0$.

## Theorem

Suppose $p(z) \in \mathbf{C}[z]$ with $\operatorname{deg} p(z) \geq 1$. Then a is a root of $p(z)$ if and only if $p(z)=q(z)(z-a)$ with $q(z) \in \mathbf{C}[z]$. In this case, we say that $(z-a)$ divides $p(z)$ or that $(z-a)$ is a factor of $p(z)$.

## Theorem (The Fundamental Theorem of Algebra)

Every polynomial in $\mathbf{C}[z]$ with $\operatorname{deg} p(z) \geq 1$ has at least one root.

## Corollary

Suppose that $p(z) \in \mathbf{C}[z]$ with $\operatorname{deg} p(z)=n \geq 1$. Then there are complex constants a and $z_{1}, \ldots, z_{n}$ such that $p(z)=a\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)$.

## What about over the Reals?

## Definition (Canonical Bad Apple)

A quadratic polynomial $q(z)=a z^{2}+b z=c$ with real coefficients is called an irreducible quadratic if $q(z)$ has no real roots.

## Example

$q(z)=z^{2}+1$ and $s(z)=z^{2}+z+1$ are examples of irreducible quadratics.

## Theorem

Suppose that $p(z) \in \mathbf{C}[z]$ has all real coefficients. The $p(z)$ factors into a product of irreducible quadratics and real linear factors: $p(z)=a\left(z-r_{1}\right) \cdots\left(z-r_{k}\right) q_{1}(z) \cdots q_{s}(z)$ with $\operatorname{deg} p(z)=k+2 s$.

